首页 | 本学科首页   官方微博 | 高级检索  
     

AC-PSO算法在无人机任务规划中的应用
引用本文:谭皓 李玉峰 王金岩 何亦征 沈春林. AC-PSO算法在无人机任务规划中的应用[J]. 南京航空航天大学学报(英文版), 2005, 22(3): 264-270
作者姓名:谭皓 李玉峰 王金岩 何亦征 沈春林
作者单位:[1]南京航空航天大学自动化学院,中国南京210016 [2]上海航空一集团第615研究所,中国上海200233
基金项目:航空科学基金(02F150001,01C15001)资助项目;教育部博士研究基金(20030287008)资助项目.
摘    要:无人机飞行中合理的路线规划可以减小飞行时间、降低油耗,减小被敌方发现、攻击的可能,从而提高了完成任务的概率.鉴于大部分无人机是以一个相对固定的高度进行侦察和任务飞行,故可将无人机的飞行任务规划视为二维平面的TSP问题.本文进一步将地面防空威胁与飞行距离统一量化,通过求解TSP求取最优无人机任务规划.文中通过分析蚁群算法与粒子群算法,提出了一种新的混合方法AC-PSO算法解决TSP求解问题.算法借鉴了蚁群算法的路线构造方法和粒子群算法的进化策略思想,同时给出了提升算法效率的一些措施.实验验证,该算法和威胁建模方法相结合,能有效地满足无人机飞行任务规划的要求.

关 键 词:无人机  任务规划  粒子群优化  进化计算
收稿时间:2004-12-01
修稿时间:2005-02-28

AC-PSO ALGORITHM FOR UAV MISSION PLANNING
TAN Hao, LI Yu-feng, WANG Jin-yan, HE Yi-zheng, SHEN Chun-lin. AC-PSO ALGORITHM FOR UAV MISSION PLANNING[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2005, 22(3): 264-270
Authors:TAN Hao   LI Yu-feng   WANG Jin-yan   HE Yi-zheng   SHEN Chun-lin
Affiliation:1. College of Automation Engineering, NUAA, 29 Yudao Street, Nanjing, 210016, P.R. China; 2. No. 615 Research Institute, China Aviation Industry Corporation I , Shanghai,200233,P. R. China
Abstract:Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2-D (horizontal) path arrangement problem. By modeling the antiaircraft threat, the UAV mission planning can be mapped to the traveling seaman problem (TSP). A new algorithm is presented to solve the TSP. The algorithm combines the traditional ant colony system (ACS) with particle swarm optimization (PSO), thus being called the AC-PSO algorithm. It uses one by one tour building strategy like ACS to determine that the target point can be chosen like PSO. Experiments show that AC-PSO synthesizes both ACS and PSO and obtains excellent solution of the UAV mission planning with a higher accuracy.
Keywords:unmanned air vehicle   mission planning   particle swarm optimization   evolutionary computation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号