首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合信息的转子振动故障SVM诊断方法
摘    要:通过提取信息特征,提出基于融合信息的转子振动故障支持向量机(SVM)诊断方法.首先,在转子试验台上分别模拟转子不平衡、轴系不对中、转子裂纹和转子碰磨4种典型故障,采集这4种典型故障在多转速和多测点下的振动加速度信号;其次,提取基于时域的奇异谱熵和频域的功率谱熵的转子振动故障过程变化规律的信息特征;最后,将提取到的信息特征作为故障向量,建立SVM故障诊断模型,进而对转子振动故障进行诊断.实例诊断结果表明:将信息特征与支持向量机相结合进行转子振动故障诊断,诊断结果准确率达到了97%,有效地提高了故障诊断的准确率.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号