首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Juno Mission
Authors:S J Bolton  J Lunine  D Stevenson  J E P Connerney  S Levin  T C Owen  F Bagenal  D Gautier  A P Ingersoll  G S Orton  T Guillot  W Hubbard  J Bloxham  A Coradini  S K Stephens  P Mokashi  R Thorne  R Thorpe
Institution:1.Jet Propulsion Laboratory,California Institute of Technology,Pasadena,USA;2.Department of Geological Sciences,State University of New York at Geneseo,Geneseo,USA;3.Astrogeology Science Center,U.S. Geological Survey,Flagstaff,USA;4.Sagan Center at the SETI Institute and NASA Ames Research Center,Moffett Field,USA;5.Southwest Research Institute,Boulder,USA;6.Planetary Science Institute,Lakewood,USA;7.NASM CEPS,Smithsonian Institution,Washington,USA;8.Department of Electrical and Electronic Engineering,Imperial College,London,UK;9.German Aerospace Center (DLR),Institute of Planetary Research,Berlin,Germany;10.Occidental College,Los Angeles,USA;11.Central Washington University,Ellensburg,USA;12.Department of Earth and Planetary Sciences,University of Tennessee,Knoxville,USA;13.Institute for Geophysics,University of Texas,Austin,USA;14.MS GIS Program,University of Redlands,Redlands,USA;15.Institut Physique du Globe de Paris,Université Paris Sorbonne,Paris,France
Abstract:The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ~600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ~5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号