首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decentralized adaptive sliding mode control of a space robot actuated by control moment gyroscopes
Institution:School of Astronautics, Beihang University, Beijing 100083, China
Abstract:An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane’s equations. The controller for each link or the base is designed sep-arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a ‘‘lumped” matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen-eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov’s method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.
Keywords:Adaptation law  Ball joint  Control moment gyroscopes  Sliding mode control  Space robot  Trajectory tracking
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号