首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantitative criteria for estimation of natural and artificial ecosystems functioning.
Authors:N S Pechurkin
Institution:Institute of Biophysics, SB RAS, Krasnoyarsk, Russia. nsla@santa.krs.ru
Abstract:Using biotic turnover of substances in trophic chains, natural and artificial ecosystems are similar in functioning, but different in structure. It is necessary to have quantitative criteria to evaluate the efficiency of artificial ecosystems (AES). These criteria are dependent on the specific objectives for which the AES are designed. For example, if AES is considered for use in space, important criteria are efficiency in use of mass, power, volume (size) and human labor and reliability. Another task involves the determination of quantitative criteria for the functioning of natural ecosystems. To solve the problem, it is fruitful to use a hierarchical approach suitable for both individual links and the ecosystem as a whole. Energy flux criteria (principles) were developed to estimate the functional activities of biosystems at the population, community and ecosystem levels. A major feature of ecosystems as a whole is their biotic turnover of matter the rate of which is restricted by the lack of limiting substances. Obviously, the most generalized criterion is to take into account the energy flux used by the biosystem and the quantity of limiting substance included in its turnover. The use of energy flux by ecosystem, E(USED)--is determined from the photoassimilation of CO2 by plants (per time unit). It can be approximately estimated as the net primary production of photosynthesis (NPP). So, the ratio of CO2 photoassimilation rate (sometimes, measured as NPP) to the total mass of limiting substrate can serve as a main universal criterion (MUC). This MUC characterizes the specific cycling rate of limiting chemical elements in the system and effectiveness of every ecosystem including the global Biosphere. Comparative analysis and elaboration of quantitative criteria for estimation of natural and artificial ecosystems activities is of high importance both for theoretical considerations and for real applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号