Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics |
| |
Authors: | Jongbin Im Jungsun Park |
| |
Affiliation: | 1. Korea Aerospace Research Institute, Daejeon 305-333, Republic of Korea 2. Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Koyang 412-791, Republic of Korea |
| |
Abstract: | This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem. |
| |
Keywords: | Bayesian statistics Kriging Particle swarm optimization (PSO Response surface method (RSM |
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录! |
| 点击此处可从《中国航空学报》浏览原始摘要信息 |
|
点击此处可从《中国航空学报》下载全文 |
|