首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8546篇
  免费   1869篇
  国内免费   1548篇
航空   7612篇
航天技术   1663篇
综合类   967篇
航天   1721篇
  2024年   28篇
  2023年   148篇
  2022年   326篇
  2021年   379篇
  2020年   368篇
  2019年   345篇
  2018年   329篇
  2017年   374篇
  2016年   470篇
  2015年   415篇
  2014年   594篇
  2013年   455篇
  2012年   542篇
  2011年   722篇
  2010年   494篇
  2009年   562篇
  2008年   485篇
  2007年   493篇
  2006年   476篇
  2005年   399篇
  2004年   341篇
  2003年   291篇
  2002年   303篇
  2001年   262篇
  2000年   293篇
  1999年   255篇
  1998年   256篇
  1997年   226篇
  1996年   231篇
  1995年   179篇
  1994年   170篇
  1993年   157篇
  1992年   105篇
  1991年   127篇
  1990年   114篇
  1989年   100篇
  1988年   113篇
  1987年   26篇
  1986年   8篇
  1984年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The Earth orbital environment is drastically changing due to an intensification of the space activities. In particular, several projects of large constellations, proposed for the next years for communications purpose like global internet access, Internet of Things, or for Earth observations, will lead to the deployment of several thousands of new satellites at an unprecedented rate. It is a crucial challenge for space traffic management, which will deal with a great number of satellite conjunctions, potentially causing a collision with damaging consequences for the constellation itself and the space environment sustainability.In this paper, we investigate the close approach frequency and the cumulative collision probability for each referenced constellation. For this purpose, we compute the orbital evolution of satellites in different constellations during the lifecycle, from the deployment to the decommissioning, and we apply the CUBE algorithm and the Foster method to assess the collision probability with the background space debris population assuming a constant uncertainty in position. We show the variation of risk defined by the close approach frequency and the cumulative collision probability as a function of the proposed configuration. In particular, satellites of the Iridium and Kuiper constellation, but also satellite of the Telesat constellation on polar orbits are the most exposed at a collision. Moreover, the decommissioning phase contribute for a major part to the final cumulative collision probability.  相似文献   
2.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   
3.
《中国航空学报》2021,34(5):617-627
In this paper, a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed. Firstly, the invariable parameters in the forming process including shot size, mass flow, peening distance and peening angle are determined according to the empirical and machine type. Then, the optimal value of air pressure for the whole shot peening is selected by the experimental data. Finally, the feeding speed for every shot peening path is predicted by regression equation. The integral panel part with thickness from 2 mm to 5 mm and curvature radius from 3200 mm to 16000 mm is taken as a research object, and four experiments are conducted. In order to design specimens for acquiring the forming data, one experiment is conducted to compare the curvature radius of the plate and stringer-structural specimens, which were peened along the middle of the two stringers. The most striking finding of this experiment is that the outer shape error range is below 3.9%, so the plate specimens can be used in predicting feeding speed of the integral panel. The second experiment is performed and results show that when the coverage reaches the limit of 80%, the minimum feeding speed is 50 mm/s. By this feeding speed, the forming curvature radius of the specimens with different thickness from the third experiment is measured and compared with the research object, and the optimal air pressure is 0.15 MPa. Then, the plate specimens with thickness from 2 mm to 5 mm are peened in the fourth experiment, and the measured curvature radius data are used to calculate the feeding speed of different shot peening path by regressive analysis method. The algorithm is validated by forming a test part and the average deviation is 0.496 mm. It is shown that the approach can realize the forming of the integral panel precisely.  相似文献   
4.
《中国航空学报》2021,34(5):573-584
To ensure tasks can be completed after a free-swinging joint failure occurs, a multi-stage regulation strategy of space manipulators is proposed. Considering all terms of the dynamics equation, an evaluation model of the regulation ability (EMRA) of active joints over the fault joint is established based on the fuzzy entropy. And then a multi-stage regulation strategy based on the EMRA is designed to regulate the fault joint. The strategy divides the regulation process into several stages, and select a certain active joint to regulative the fault joint in every stage. With this multi-stage regulation strategy, the fault joint can be regulated to the desired angle without huge torque on regulative joints. The simulation is carried out with a 7-DOF space manipulator, verifying the correctness and effectiveness of the multi-stage regulation strategy. The strategy has three advantages: Coriolis and centrifugal terms are both considered for the first time in selecting the regulative joint, making the selection result more in line with the actual regulation process; The influence of the model uncertainty is eliminated in establishing the EMRA, making the evaluation of regulative ability more precise; The fault joint is successfully regulated to the desired angle without huge torque on regulative joints.  相似文献   
5.
Future space ventures will likely require exploitation of near-Earth asteroid resources. Moreover, it can be envisaged that asteroids may host habitats in their interiors. In fact, a cavern inside an asteroid would be a natural radiation shield against cosmic radiation and may also serve as a confined environment for storage of mined material such as water ice or other processed volatiles such as propellants. To this end, this paper proposes to leverage the asteroid rotational self-energy to remove material from the asteroid interiors and create a spherical cavern, by means of the orbital siphon concept. The siphon is a chain of tether-connected payload masses (the asteroid material), which exploits the rotation of the asteroid for the delivery of mass from the asteroid to escape. Under certain conditions the siphon can be initiated to ensure self-sustained flow of mass from the asteroid to escape. A net orbital siphon effect is generated by connecting new payloads at the bottom of the chain while releasing the upper payloads. Key parameters are discussed, such as the required siphon dimension and the maximum size of the internal cavity that can be excavated, as a function of the asteroid rotational period. Moreover, assuming elastic material behaviour, a closed-form expression for the stress tensor is found and a failure criterion is used to identify regions in the asteroid interiors subjected to the larger stresses. It is shown that the conditions for failure are relaxed as the radius of the internal void increases.  相似文献   
6.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   
7.
Urban heat island (UHI) is emerged as a ubiquitous phenomenon that affects the outdoor thermal comfort. Hence urban microclimatic studies using numeric simulation software to find out adaption strategies are attracting the great attention of researchers and policymaker. Number of scientists carried out their research on this topic using different tools and technique whereas ENVI-met model is the most widely used simulation tools. The present study intended to examine the implication of green infrastructure of the town on enhanced microclimatic condition and to evaluate the best suitable mitigation strategy modelling cool city with ENVI-met software (V4). Five greening condition such as existing UHI condition (C1), 100% greening of roof (C2), 100% greening of roof and walls (C3), 50% greening of roof and walls (C4) and: Plantation at suitable area with 50% greening of roof and walls (C5) have been taken into consideration for the microclimate simulation for all three selected sites. Among these five conditions, C3 for the open mid-rise and compact low-rise, C5 for the open low-rise are identified as one of the most suitable strategies which can reduce the air temperature of peak hours by 2.6 °C, 1.33 °C and 1.87 °C respectively. These models are validated by simple linear regression between simulated and existing air temperature in case of existing UHI condition (C1) and in all the cases coefficient of determination value is high such as for open mid-rise, compact low-rise and open low-rise, it is 0.92, 0.92 and 0.75 respectively. Therefore it can be concluded that the application of those strategies can improve the urban thermal environment as well as the outdoor thermal comfort of English bazaar Town and its surroundings.  相似文献   
8.
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition.  相似文献   
9.
Elucidating versatile configurations of spiral folding, and investigating the deployment performance is of relevant interest to extend the applicability of deployable membranes towards large-scale and functional configurations.In this paper we propose new schemes to package flat and curved membranes of finite thickness by using multiple spirals, whose governing equations render folding lines by juxtaposing spirals and by accommodating membrane thickness. Our experiments using a set of topologically distinct flat and curved membranes deployed by tensile forces applied in the radial and circumferential directions have shown that (1) the multi-spiral approach with prismatic folding lines offered the improved deployment performance, and (2) the deployment of curved surfaces progresses rapidly within a finite load domain. Furthermore, we confirmed the high efficiency of membranes folded by multi-spiral patterns.From viewpoints of configuration and deployment performance, the multi-spiral approach is potential to extend the versatility and maneuverability of spiral folding mechanisms.  相似文献   
10.
《中国航空学报》2020,33(3):879-892
Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine (LPT) cascade. All of the measurements were conducted in both the presence and absence of incoming wakes, and numerical analysis was performed to elucidate the flow mechanism. With increasing Reynolds number, the influence of the incoming wakes on suppressing the secondary flow gradually increased owing to the greater influence of incoming wakes on reducing the negative incidence angle at higher Reynolds numbers, leading to a lower blade loading near the leading edge and suppression of the Pressure Side (PS) leg of the horseshoe vortex. However, the effect of unsteady wakes on suppressing the profile losses gradually became weaker owing to the reduced size of the Suction Side (SS) separation bubble and increased mixing loss in the free-flow region at high Reynolds numbers. Incoming wakes clearly improved the aerodynamic performance of the low-pressure turbine cascade at low Reynolds numbers of 25,000 and 50,000. In contrast, at the high Reynolds number of 100,000, the profile loss at the midspan and mass-averaged total losses downstream of the cascade were higher in the presence of wakes than in the absence of wakes, and the unsteady wakes exerted a negative influence on the aerodynamic performance of the LPT cascade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号