首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天   2篇
  2014年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
This investigation deals with the free vibration characteristics of circular higher-order shear deformable nanoplates around the postbuckling configuration incorporating surface effects. Using the Gurtin–Murdoch elasticity theory, a size-dependent higher-order shear deformable plate model is developed which takes account all surface effects including surface elasticity, surface stress and surface density. Geometrical nonlinearity is considered based on the von Karman type nonlinear strain–displacement relationships. Also, in order to satisfy the balance conditions between bulk and surfaces of nanoplate, it is assumed that the normal stress is distributed cubically through the thickness of nanoplate. Hamilton?s principle is utilized to derive non-classical governing differential equations of motion and related boundary conditions. Afterwards, an efficient numerical methodology based on a generalized differential quadrature (GDQ) method is employed to solve numerically the problem so as to discretize the governing partial differential equations along various edge supports using Chebyshev–Gauss–Lobatto grid points and pseudo arc-length continuation technique. A comparison between the results of present non-classical model and those of the classical plate theory is conducted. It is demonstrated that in contrast to the prebuckling domain, for a specified value of axial load in the postbuckling domain, increasing the plate thickness leads to higher frequencies.  相似文献   
2.
It is suggested that oxygen excess in undoped material of the high temperature superconducting bismuth family creates periodic two-dimensional Cu3+-ion patches in the copper–oxygen planes. These nanostructures have a size of square and show a strong linear relationship to their critical transition temperatures Tc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号