首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
航天技术   3篇
航天   1篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Indices of the North Atlantic Oscillation and the Arctic Oscillation show correlations on the day-to-day timescale with the solar wind speed (SWS). Minima in the indices were found on days of SWS minima during years of high stratospheric aerosol loading. The spatial distribution of surface pressure changes during 1963–2011 with day-to-day changes in SWS shows a pattern resembling the NAO. Such a pattern was noted for year-to-year variations by Boberg and Lundstedt (2002), who compared NAO variations with the geo-effective solar wind electric field (the monthly average SWS multiplied by the average southward component, i.e., negative Bz component, of the interplanetary magnetic field). The spatial distribution of the correlations of geopotential height changes in the troposphere and stratosphere with the SWS; the geo-effective electric field (SWS∗Bz); and the solar 10.7 cm flux suggests that solar wind inputs connected to the troposphere via the global electric circuit, together with solar ultraviolet irradiance acting on the stratosphere, affect regional atmospheric dynamics.  相似文献   
2.
This study reports on observations of large-scale atmospheric gravity waves/traveling ionospheric disturbances (AGWs/TIDs) using Global Positioning System (GPS) total electron content (TEC) and Fabry–Perot Interferometer’s (FPI’s) intensity of oxygen red line emission at 630?nm measurements over Svalbard on the night of 6 January 2014. TEC large-scale TIDs have primary periods ranging between 29 and 65?min and propagate at a mean horizontal velocity of 749–761?m/s with azimuth of 345–347° (which corresponds to poleward propagation direction). On the other hand, FPI large-scale AGWs have larger periods of 42–142?min. These large-scale AGWs/TIDs were linked to enhanced auroral activity identified from co-located all-sky camera and IMAGE magnetometers. Similar periods, speed and poleward propagation were found for the all-sky camera (60–97?min and 823?m/s) and the IMAGE magnetometers (32–53?min and 708?m/s) observations. Joule heating or/and particle precipitation as a result of auroral energy injection were identified as likely generation mechanisms for these disturbances.  相似文献   
3.
为研究北极海冰分布、形态特征的变化规律,基于Sentinel-1卫星的SAR数据,对弗雷姆海峡区域的海冰进行长时间序列的提取及变化分析。对试验影像预处理,利用K-均值聚类算法提取海冰。基于浮冰面积大小,将浮冰进行分类,研究各参数与海冰破碎物理过程的关系,海冰分布以密集度体现,海冰的形态特征以面积、周长、圆度等参数描述。结果表明:利用高分辨率SAR数据,能获取精细的海冰分布信息,将其与传统的海冰密集度产品结合,可构造信息更丰富的多尺度冰情图,为极地海冰监测提供支持,对维护北极航道安全、分析北冰洋海冰气候效应等有重要意义。  相似文献   
4.
The ionizing radiation environment was analyzed for a variety of potential Highly Elliptical Orbits (HEOs) with orbital periods ranging from 6 h to 24 h suitable to continuously monitor the Arctic region. Several models available from the ESA Space Environment Information System (SPENVIS) online tool were employed, including the new-generation AE9/AP9 model for trapped radiation. Results showed that the Total Ionizing Dose (TID) has a well-pronounced local minimum for the 14-h orbit, which is nearly identical to the overall minimum observed for the longest orbital period (24 h). The thickness of slab aluminum shielding required to keep the annual TID below 10, 5 and 3.33 krad (i.e. 150, 75 and 50 krad for 15 years of mission duration) for a 14-h orbit is 2.1, 2.7 and 3.1 mm respectively. The 16-h orbit requires an additional 0.5 mm of aluminum to achieve the same results, while the 24-h orbit requires less shielding in the order of 0.2–0.3 mm. Comparison between the AE8/AP8 and AE9/AP9 models was conducted for all selected orbits. Results demonstrated that differences ranged from −70% to +170% depending on orbit geometry.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号