首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
航空   10篇
航天技术   2篇
综合类   3篇
航天   7篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
排序方式: 共有22条查询结果,搜索用时 390 毫秒
1.
2.
辅助动力装置喘振控制方法   总被引:15,自引:2,他引:15  
以带负载压气机的辅助动力装置(APU)为研究对象,分析了其引气工作特点及负载压气机喘振机理,提出采用出口换算流量小于最小稳定工作流量的方法来控制负载压气机稳定工作,当APU出口换算流量小于最小稳定工作流量2%时,通过打开喘振控制阀(SCV)防止APU喘振.设计了比例积分微分(PID)控制器控制SCV开度,试车数据与相同条件下的逼喘仿真试验结果对比表明,所提出的方法既可避免负载压气机喘振,又可保证出口压力满足引气要求.   相似文献   
3.
本文推导了提动头式和滑阀式窗口形两种典型调节阀的理论型面线通用坐标方程,在给定A=f(m)的函数关系后,即可计算表达该阀几何形状的曲线方程,从而求得调节阀的精确的几何尺寸。并讨论了为便于加工,型面曲线用直线近似的方法和误差的校核。  相似文献   
4.
通过对一种两级气动直接力控制阀进行结构参数设计和基于计算流体力学(CFD)的静态特性仿真研究,比较分析了前置级阀挡板及主阀芯在不同位置时阀腔内流场的流动状态和压力损失情况并提出优化措施,得到了挡板位置-流量特性曲线和位置-气动力特性曲线、主阀芯位置-流量特性曲线以及主阀输出推力。利用推力测量试验台进行了原理样机的热试,实测结果与仿真结果基本一致,证明了对两级直接力控制阀的静态特性分析是准确的。分析结果表明,在入口压力保持不变的情况下,前置级阀挡板及主阀芯开口度增大,喷管的输出流量也增大,处于中位时两喷管输出总流量最大;当挡板自中位向极限位置运动时,气动力逐渐增大,是帮助挡板运动的主动力,反之恰好相反;该阀输出的644 N大推力完全能满足导弹控制系统的要求。  相似文献   
5.
针对某空间飞行器对轨控发动机控制阀体积及重量的要求,统筹考虑气液路供应、4台发动机、氧化剂及燃料贮箱的安装要求,设计了新颖的电磁气动阀四机集成结构。经仿真分析及试验实测,结果表明:电磁气动阀四机集成结构具有设计巧妙、性能优良的特点。  相似文献   
6.
简要介绍了某型飞机加输油控制阀测试系统工作原理和功能,设计了基于PLC的控制系统,给出了控制系统的硬件、软件设计和实现方法。  相似文献   
7.
8.
泵阀协调控制电动静液作动器方案分析   总被引:1,自引:0,他引:1  
针对典型的EHA (Electro-Hydrostatic Actuator)系统存在的频响较低的问题,为了兼顾作动系统的效率和频响,将控制阀引入了EHA系统,提出了3种泵阀协调控制的EHA方案,分别是:采用EHSV(Electro-Hydraulic Servo Valve)的EHA系统,采用DDV(Direct Drive Valve)的EHA系统以及采用TPCV(Total Pressure Control Valve)的EHA系统.阐述了这3种方案的系统组成及工作原理,采用AMESim对这3种方案及典型的EHA进行了仿真对比分析.从仿真结果可以看出:泵阀协调控制的EHA系统可以大大提高系统的频响,同时还具有较高的效率.作为3种过渡方案,将对目前机载电动静液作动系统的研制具有实际指导意义.   相似文献   
9.
针对经典泵控电液作动器固有频率低的问题,对原系统增加了一个新设计的总压力控制阀,它可保证作动筒两个工作腔的压力之和始终为一常数并使两腔压力可控,从而使泵控系统达到和阀控系统相当的固有频率.这种改进型作动器称为EHCA(Electro-Hydraulic Compound regulating integrated Actuator).针对存在的相乘非线性控制问题,通过分析EHCA和总压力控制阀的工作原理,设计了基于精确线性化方法的滑模控制器,并分析了电机转速和变量泵排量在不同工况下的控制量大小配合问题.分析和仿真证明,该设计思想是有效实现高效率、节能和快响应的电液组合作动器方案.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号