首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   4篇
航空   23篇
航天技术   15篇
航天   5篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1999年   3篇
  1995年   3篇
  1991年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   
2.
Coronal mass ejections and post-shock streams driven by them are the most efficient drivers of strong magnetospheric activity, magnetic storms. For this reason there is considerable interest in trying to make reliable forecasts for the effects of CMEs as much in advance as possible. To succeed this requires understanding of all aspects related to CMEs, starting from their emergence on the Sun to their propagation to the vicinity of the Earth and to effects within the magnetosphere. In this article we discuss some recent results on the geoeffectivity of different types of CME/shock structures. A particularly intriguing observation is that smoothly rotating magnetic fields within CMEs are most efficient in driving storm activity seen in the inner magnetosphere due to enhanced ring current, whereas the sheath regions between the shock and the ejecta tend to favour high-latitude activity.  相似文献   
3.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
4.
Interplanetary coronal mass ejections (ICMEs) originating from closed field regions on the Sun are the most energetic phenomenon in the heliosphere. They cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles. ICMEs are the interplanetary manifestations of CMEs typically remote-sensed by coronagraphs. This paper summarizes the observational properties of ICMEs with reference to the ordinary solar wind and the progenitor CMEs.  相似文献   
5.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   
6.
空间环境是影响航天器可靠性的重要因素。与地球轨道航天器相比,行星际探测任务可能会遭受更加恶劣的空间环境,例如极端温度环境,辐射环境,腐蚀性大气环境、宇宙尘等,再加上行星际任务寿命长,采用先进的器件和材料,空间环境对行星际探测器的可靠性构成严重的威胁,直接关系到探测目标能否实现。因此考虑空间环境对行星际探测器的影响,开展相关的预先研究无论是对于制定行星际空间探测计划,还是搭载仪器的设计都具有非常重要的意义。文章分析了极端温度、辐射环境和行星表面综合环境对探测器的影响,并对开展相关研究提出了建议。  相似文献   
7.
The radiation environment in space is a major concern for human spaceflight because of the adverse effects of high levels of radiation on astronauts’ health. Therefore, it is essential to perform radiation risk assessments already during the concept studies of a manned mission. Galactic Cosmic Rays (GCR) have been identified to be one of the primary sources of radiation exposure in space.  相似文献   
8.
通过一系列变量置换推导出不同喷气速度和不同加速度条件下,计算恒星际飞船加速段的时间和距离的普遍公式及多级火箭加速情况下加速段的时间和距离的公式。最后以天狼星作为航行目标、计算了用5级和10级火箭加速飞行的时间和距离。结果表明,当火箭的级数很多,且各级加速度相等时,其飞行时间与距离非常接近匀加速飞行的情况。  相似文献   
9.
The interaction between electromagnetic waves and matter is the working principle of a photon-propelled spacecraft, which extracts momentum from the solar radiation to obtain a propulsive acceleration. An example is offered by solar sails, which use a thin membrane to reflect the impinging photons. The solar radiation momentum may actually be transferred to matter by means of various optical phenomena, such as absorption, emission, or refraction. This paper deals with the novel concept of a refractive sail, through which the Sun’s light is refracted by crossing a film made of polymeric micro-prisms. The main feature of a refractive sail is to give a large transverse component of thrust even when the sail nominal plane is orthogonal to the Sun-spacecraft line. Starting from the recent literature results, this paper proposes a semi-analytical thrust model that estimates the characteristics of the propulsive acceleration vector as a function of the sail attitude angles. Such a mathematical model is then used to analyze a simplified Earth-Mars and Earth-Venus interplanetary transfer within an optimal framework.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号