首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
航空   1篇
航天技术   17篇
  2023年   2篇
  2021年   4篇
  2020年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   
2.
An analysis of the main remotly sensed oceanographic variables was conducted to characterize the dominant drivers that modulate the spatial-temporal variability of coastal phytoplankton biomass in the northern limit of the Eastern Tropical Pacific. The phytoplankton biomass was analyzed using monthly average satellite chlorophyll (Chlo) concentration data from MODIS sensors for the period 2003–2017. Oceanographic conditions were analyzed by considering (i) Sea Surface Temperature (SST) high-resolution data from the GHRSST project, (ii) wind stress calculated with data from the zonal and meridional components of the CCMP product, (iii) climatological precipitation, and (iv) climatological river flow. Chlo time series and spatial variability were analyzed using Hovmöller diagrams and Empirical Orthogonal Functions (EOF), respectively. A strong semi-annual signal in Chlo concentration along the coast was observed: the first peak occurs in winter-spring (5.0 mg·m−3) and a second one in summer-autumn (6.5 mg·m−3). A high year-round average of Chlo concentration (3.0–15.0 mg·m−3) was maintained by a 10 km wide along-shore coast, with maximum values spatially associated with river mouths, of which Santiago river registered the highest Chlo values (20.0 mg·m−3). Surface oceanographic conditions showed a marked annual cycle with warmer conditions (30–31 °C) from July to October and colder ones (23–24 °C) from December to April; during the cold period, seasonal wind stress stimulated coastal upwelling. The EOF showed that 70% of Chlo concentration variability was controlled by the semi-annual pattern, which responded to coastal upwelling conditions during cold period, while rivers outflows influenced high Chlo concentration during the warm period. These results highlighted the importance for land-ocean interface to sustain coastal ecosystems' biological production and the major role of watersheds as sources of nutrients to maintain high biological production during warm periods in transitional tropical-subtropical zones.  相似文献   
3.
The microstructure of rain has been studied with observations using a vertical looking Micro Rain Radar (MRR) at Ahmedabad (23.06°N, 72.62°E), a tropical location in the Indian region. The rain height, derived from the bright band signature of melting layer of radar reflectivity profile, is found to be variable between the heights 4600 m and 5200 m. The change in the nature of rain, classified on the basis of radar reflectivity, is also observed through the MRR. It has been found that there are three types of rain, namely, convective, mixed and stratiform rain, prevailing with different vertical rain microstructures, such as, Drop Size Distribution (DSD), mean drop size, rain rate, liquid water content and average fall speed of the drops at different heights. It is observed that the vertical DSD profile is more inhomogeneous for mixed and stratiform type rain than for convective type rain. It is also found that the large number of drops of size <0.5 mm is present in convective rain whereas in stratiform rain, drops concentration is appreciable up to 1 mm. A comparison of measurements taken by ground based Disdrometer and that from the 200 m level obtained from MRR shows good agreement for rain rate and DSD at smaller rain rate values. The results may be useful for understanding rain structures over this region.  相似文献   
4.
The 0 °C isotherm height is an important parameter for prediction of rain attenuation of microwave and millimeter wave for Earth-space communication. The variations of 0 °C isotherm heights for two monsoon seasons have been studied based on an analysis of radiosonde over three stations. The exceedence probability statistics of rain height are compared between the two seasons. The results on the 0 °C isotherm height can be utilized for the estimation of attenuation of microwave and millimeter wave due to rain over Earth-space paths. Attenuations of radio wave due to rain at frequencies above 10 GHz and above have also been estimated using the 0 °C isotherm height so derived.  相似文献   
5.
The D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analysed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB). The cyclone Fani formed from a depression on 26th April, 2019 over the Bay of Bengal (Northeastern part of the Indian Ocean) and turned into an extremely severe cyclone with maximum 1-min sustained winds of 250 km/h on 2 May, 2019 which made landfall on 3 May, 2019. Out of six propagation paths, five propagation paths, except the JJI-CHB which was far away from the cyclone track, showed strong perturbations beyond 3σ level compared to unperturbed signals. Consistent good correlations of VLF signal perturbations with the wind speed and cyclone pressure have been seen for both the receiving stations. Computations of radio signal perturbations at CUB and CHB using the Long Wave Propagation Capability (LWPC) code revealed a Gaussian perturbation in the D-region ionosphere. Analysis of atmospheric temperature at different layers from the NASA’s TIMED satellite revealed a cooling effect near the tropopause and warming effects near the stratopause and upper mesosphere regions on 3 May, 2019. This study shows that the cyclone Fani perturbed the whole atmosphere, from troposphere to ionosphere and the VLF waves responded to the disturbances in the conductivity profiles of the lower ionosphere.  相似文献   
6.
Fronts and thermohaline structure of the Brazil–Malvinas Confluence System (BMCS) are studied from climatic data, “Marathon Exp. Leg.8, 1984” data, and Sea surface temperature (SST) data base “ds277-Reynolds” (1981–2000). The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, Fronts, Inter-Frontal and Frontal Zones are analysed and classified: (a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; (b) the Inter-Frontal Zones: Tropical/Brazil Current Zone, Subtropical Zone and Subantarctic Zone; (c) the Frontal Zones: Subtropical, Subantarctic and Polar, and (d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T–S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteristics occurs at the Brazil Current Front, which can be any of the subtropical Fronts, depending on season. Minimum mean depth of the pycnocline coincides with the Fronts of the BMCS, indicating the paths of low-salinity shelf waters into the open ocean. In the work it is shown how to recover the horizontal and vertical thermohaline structure of waters from satellite data RSMAS SST.  相似文献   
7.
In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth’s weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27–29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10–12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12–16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.  相似文献   
8.
《中国航空学报》2021,34(9):1-10
The full constellation of Chinese Global Navigation Satellite System (GNSS) BeiDou-3 has been deployed completely and started fully operational service. In addition to providing global Positioning, Navigation and Timing (PNT) services, the BeiDou-3 satellites transmissions can also be used as the sources of illumination for Earth Observation (EO) with a bistatic radar configuration. This innovative EO concept, known as GNSS reflectometry (GNSS-R), allows to measure the Earth surface characteristics at high resolution via the reflected L-band radar signals collected by a constellation of small, low cost and low Earth orbiting satellites. For the first time in orbit, earth reflected BeiDou-3 signal has been detected from the limited sets of raw data collected by the NASA’s Cyclone GNSS (CYGNSS) constellation. The feasibility of spaceborne BeiDou-3 reflections on two typical applications, including sea surface wind and flooding inundation detection, has been demonstrated. The methodology and results give new strength to the prospect of new spaceborne GNSS-R instruments and missions, which can make multi-GNSS reflectometry observations available to better capture rapidly changing weather systems at better spatio-temporal scales.  相似文献   
9.
Lineament extraction from satellite remotely sensed data has been one of the widely used applications of remote sensing in geology. In fact, recent advances in digital image processing allow such lineament extraction to be accomplished in semi-automatic to fully automatic approaches. However, satellite remotely sensed data acquired in heavily vegetated regions such as tropical rainforest, are vulnerable to higher inherent noise levels attributed to the resultant effects of scattering by clouds and adjacency effects of highly inhomogeneous vegetation cover within the pixel dimension. In this study, we examined the effects of noise levels to lineament extraction using a fully automatic approach, consisting of a combination of edge-line detection algorithms. Ancillary information from a digitized topographic map and image classification was used to discriminate between cultural and natural lineaments from the extracted lineaments. Adapting the combination of edge detection and a line-linking algorithm, we have found the optimal parameters for automatic lineament extraction of such complex areas using Enhanced Thematic Mapper (ETM+) data. A noise level of 30% is the maximum threshold before artifacts are generated. It is therefore concluded that the combination of edge-based and line-linking digital image processing operations with the priori local optimal parameters is crucial in lineament feature extraction in heavily vegetated regions.  相似文献   
10.
Temperature observations at 20–90 km height and 5°N–15°N during the period of December 1992–March 1993 from the WINDII and MLS experiments on the UARS satellite are analysed together with MF radar winds and UKMO assimilated fields of temperature and zonal and meridional winds. The correlation between the different datasets at the tropics and zonal mean wind data at mid latitudes is examined for period February–March 1993, when series of stratospheric warming events were observed at middle and high latitudes. Wavelet analysis is applied to investigate coupling between stationary and travelling planetary waves in the stratosphere and the upper mesosphere. Planetary waves m = 1 with periods of 4–7 days, 8–12 days and 13–18 days are found to dominate the period. Westward 7- and 16–18 day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号