首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   29篇
  国内免费   34篇
航空   90篇
航天技术   95篇
综合类   20篇
航天   34篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   2篇
  2019年   14篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   15篇
  2011年   10篇
  2010年   8篇
  2009年   21篇
  2008年   22篇
  2007年   18篇
  2006年   13篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1984年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
1.
Gradual solar energetic particle (SEP) events are evidently accelerated by coronal/interplanetary shocks driven by coronal mass ejections. This talk addresses the different factors which determine the composition of the accelerated ions. The first factor is the set of available seed populations including the solar wind core and suprathermal tail, remnant impulsive events from preceding solar flares, and remnant gradual events. The second factor is the fractionation of the seed ions by the injection process, that is, what fraction of the ions are extracted by the shock to participate in diffusive shock acceleration. Injection is a controversial topic since it depends on the detailed electromagnetic structure of the shock transition and the transport of ions in these structured fields, both of which are not well understood or determined theoretically. The third factor is fractionation during the acceleration process, due to the dependence of ion transport in the turbulent electromagnetic fields adjacent to the shock on the mass/charge ratio. Of crucial importance in the last two factors is the magnetic obliquity of the shock. The form of the proton-excited hydromagnetic wave spectrum is also important. Finally, more subtle effects on ion composition arise from the superposition of ion contributions over the time history of the shock along the observer’s magnetic flux tube, and the sequence of flux tubes sampled by the observer.  相似文献   
2.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
为提高模用锌合金ZA4-3的性能,扩大其应用范围,本项工作采用流变铸造法成功地制备了性能稳定的Al2O3P/ZA4-3复合材料。对该材料进行了弯曲强度、冲击韧性、压缩强度、硬度及耐磨性等性能试验,结果表明:Al2O3p的加入,使锌合金的压缩强度、室温和高温硬度以及耐磨性明显提高,其弯曲强度略有降低,而其冲击韧性下降了 。最后还讨论了成形工艺参数、颗粒含量和颗粒直径对该复合材料性能的影响。  相似文献   
4.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research.  相似文献   
5.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   
6.
《中国航空学报》2021,34(6):1-17
Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts. However, these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness, high strength, and strong wearing resistance. Although superhard abrasives can machine the above-mentioned materials, their dressing and manufacturing costs are high. By contrast, ceramic corundum abrasives fabricated by sol–gel method is a cost-effective product between conventional and superhard abrasives. Ceramic corundum abrasives exhibit self-sharpening and high toughness. In this review, the optimization methods of ceramic corundum abrasive properties are introduced from three aspects: precursor synthesis, particle shaping, and sintering. Firstly, the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed. Specifically, seeds can reduce the phase transition temperature and improve fracture toughness. The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives. Then, the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed, and three methods of abrasive shaping are summarized. The micromold replication technique is highly advanced and can be used to prepare functional abrasives. Additionally, the influence of a new sintering method, namely, two-step sintering technique, on the microstructural and mechanical performance of ceramic corundum abrasives is summarized. Finally, the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected.  相似文献   
7.
在引入了一套磨粒形态学描述子来提取磨损颗粒的显微形态特征的基础上 ,采用人工神经网络技术 ,编制了用于磨损颗粒自动识别的 BP网络计算机模拟程序。在网络训练的过程中应用了本文引入的因子模糊化训练方法 ,使训练速度大大加快 ,以异或问题为例 ,速度可提高 5~ 1 0倍。应用此网络对磨粒测试库进行识别实验 ,识别正确率在 90 %以上 ,并且识别速度很快 ,大大优于传统的磨粒识别方法。  相似文献   
8.
粒子流量可调的喷管烧蚀试验方法   总被引:1,自引:1,他引:1  
发展了一种保持燃气参数不变的情况下能实现粒子流量可调的喷管烧蚀试验方法,并研制了试验装置。该试验方法是将两相流燃气中的一部分粒子收集起来,以减少流经喷管的粒子流量,通过改变收集孔和收敛角的大小来调节粒子流量。采用该方法开展了变粒子流量的喷管烧蚀试验,试验结果验证了该方法是有效的,试验条件下喷管喉部平均线烧蚀率随粒子流量减小而降低。  相似文献   
9.
张赟  张宇坤  李昂 《推进技术》2019,40(8):1832-1841
为了研究小型回流燃烧室不同条件下的工作状态,并分析其产生积碳现象的原因,采用k-ε湍流模型、EDC湍流燃烧等模型对该燃烧室多个工况进行数值计算。结果表明,燃烧室性能参数计算值与台架数据较吻合,各个状态下参数相对误差均小于1.37%。根据各工况的温度分布的变化,发现燃烧室火焰随工况降低逐渐向火焰筒头部收缩。计算了各工况蒸发管内的燃油蒸发率,发现蒸发率在低工况时明显降低。根据出口温度分布情况,计算出口温度分布系数OTDF为0.35。分析碳黑粒子的分布,发现积碳现象主要在火焰筒头部,其原因主要是燃烧不充分和冷却气膜的缺失。  相似文献   
10.
Understanding properties of solar energetic particle (SEP) events associated with coronal mass ejections has been identified as a key problem in solar-terrestrial physics. Although recent CME shock acceleration models are highly promising, detailed agreement between theoretical predictions and observations has remained elusive. Recent observations from ACE have shown substantial enrichments in the abundances of 3He and He+ ions which are extremely rare in the thermal solar wind plasma. Consequently, these ions act as tracers of their source material, i.e., 3He ions are flare suprathermals and He+ ions are interstellar pickup ions. The average heavy ion composition also exhibits unsystematic differences when compared with the solar wind values, but correlates significantly with the ambient suprathermal material abundances. Taken together these results provide compelling evidence that CME-driven shocks draw their source material from the ubiquitous but largely unexplored suprathermal tail rather than from the more abundant solar wind peak. However, the suprathermal energy regime has many more contributors and exhibits much larger variability than the solar wind, and as such needs to be investigated more thoroughly. Answers to fundamental new questions regarding the preferred injection of the suprathermal ions, the spatial and temporal dependence of the various sources, and the causes of their variability and their effects on the SEP properties are needed to improve agreement between the simulations and observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号