首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   1篇
航空   30篇
航天技术   32篇
航天   3篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2018年   1篇
  2013年   3篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有65条查询结果,搜索用时 0 毫秒
1.
介绍几种航天雷达高度表,其中包括弹载雷达高度表、“土星”雷达高度表和“天空实验室”雷达高度表,最后介绍一种卫星雷达高度表的设计方法。  相似文献   
2.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
Kamide  Y.  Kihn  E.A.  Ridley  A.J.  Cliver  E.W.  Kadowaki  Y. 《Space Science Reviews》2003,107(1-2):307-316
We report the recent progress in our joint program of real-time mapping of ionospheric electric fields and currents and field-aligned currents through the Geospace Environment Data Analysis System (GEDAS) at the Solar-Terrestrial Environment Laboratory and similar computer systems in the world. Data from individual ground magnetometers as well as from the solar wind are collected by these systems and are used as input for the KRM and AMIE magnetogram-inversion algorithms, which calculate the two-dimensional distribution of the ionospheric parameters. One of the goals of this program is to specify the solar-terrestrial environment in terms of ionospheric processes, providing the scientific community with more than what geomagnetic activity indices and statistical models provide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
6.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
7.
8.
空间电荷效应是空间带电粒子分布直接产生的相关效应,对于理解空间辐射环境有着重要意义。为研究地球磁场对空间电荷效应的影响,文章通过数值求解Poisson方程和相对论粒子运动方程,建立粒子云(particle-in-cell, PIC)自洽模型,并构建地球偶极子磁场模型作为内磁层背景磁场(空间分布L值为3~7)。在模型基础上,给出内磁层典型电子束结构(能量0.1~100 keV)的两种初始分布(Uniform和Gaussian分布),模拟电子束在地磁场影响下的动力学过程。结果表明:电子束结构受地磁场影响出现纵向的整体偏转,并由于自场效应产生了纵向的拉伸和横向的发散;电子束整体的偏转角主要受地磁场强弱以及电子束运动与磁场夹角影响,而拉伸和发散效应则主要受电子束能量等参数所影响。  相似文献   
9.
Recent studies evidenced that the magnetotail dynamics looks like the one of an avalanching system. This fact has been related with a near criticality dynamics and modelled by singular diffusion and transport equations. Here, we discuss some features of the Earth’s magnetotail dynamics using a thermodynamic approach. In detail we discuss the role played by fluctuations in singular diffusion and relaxation processes from a non-equilibrium thermodynamics point of view. Moreover, the emergence of non-Gaussian statistics is discussed in the framework of the thermodynamics of composite systems.  相似文献   
10.
Magnetic reconnection is a universal phenomenon where energy is efficiently converted from the magnetic field to charged particles as a result of global magnetic topology changes during which earlier separated plasma regions become magnetically connected. While the reconnection affects large volumes in space most of the topology changes and of the energization occur within small localized regions. Regions of special importance are the X-region and the separatrix region. The understanding of the microphysics of these regions is crucial for the overall understanding of the reconnection. The Earth magnetosphere is the best environment where the details of these regions can be studied in situ. We summarize their main properties and discuss recent spacecraft observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号