首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   1篇
航天技术   16篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The ionosphere/plasmasphere electron content (PEC) variations during strong geomagnetic storms in November 2004 were estimated by combining of mid-latitude Kharkov incoherent scatter radar observations and GPS TEC data derived from global TEC maps. The comparison between two independent measurements was performed by analysis of the height-temporal distribution for specific location corresponding to the mid-latitudes of Europe. The percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 70%) during night-time. During day-time the lesser values (30–45%) were observed for quiet geomagnetic conditions and rather high values of the PEC contribution to GPS TEC (up to 90%) were observed during strong negative storm. These changes can be explained by the competing effects of electric fields and winds, which tend to raise the layer to the region with lower loss rate and movement of the ionospheric plasma to the plasmasphere.  相似文献   
2.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   
3.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   
4.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   
5.
The plasmaspheric electron content (PEC) was estimated by comparison of GPS TEC observations and FORMOSAT-3/COSMIC radio occultation measurements at the extended solar minimum of cycle 23/24. Results are retrieved for different seasons (equinoxes and solstices) of the year 2009. COSMIC-derived electron density profiles were integrated up to the height of 700 km in order to retrieve estimates of ionospheric electron content (IEC). Global maps of monthly median values of COSMIC IEC were constructed by use of spherical harmonics expansion. The comparison between two independent measurements was performed by analysis of the global distribution of electron content estimates, as well as by selection specific points corresponded to mid-latitudes of Northern America, Europe, Asia and the Southern Hemisphere. The analysis found that both kinds of observations show rather similar diurnal behavior during all seasons, certainly with GPS TEC estimates larger than corresponded COSMIC IEC values. It was shown that during daytime both GPS TEC and COSMIC IEC values were generally lower at winter than in summer solstice practically over all specific points. The estimates of PEC (h > 700 km) were obtained as a difference between GPS TEC and COSMIC IEC values. Results of comparative study revealed that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50–60%) during night-time and lesser values (25–45%) during day-time.  相似文献   
6.
The plasma density distribution of plasmasphere in the geomagnetic equatorial plane can help us study the magnetosphere like plasmasphere, ionosphere and their kinetics. In this paper, we introduce a new inversion method, GE-ART, to calculate the plasma density distribution in the geomagnetic equatorial plane from the Extreme Ultraviolet (EUV) data of IMAGE satellite under the assumption that the plasma density is constant along each geomagnetic field line. The new GE-ART algorithm was derived from the traditional Algebraic Reconstruction Techniques (ART) in Computed Tomography (CT) which was different from the several existing methods. In this new method, each value of the EUV image data was back-projected evenly to the geomagnetic field lines intersected by this EUV sight. A 3-D inversion matrix was produced by the contributions of all the voxels contained in the plasmasphere covered by the EUV sensor. That is, we considered that each value of the EUV image data was relative to the plasma densities of all the voxels passed through by the corresponding EUV radiation, which is the biggest difference to all the existing inversion methods. Finally, the GE-ART algorithm was evaluated by the real EUV data from the IMAGE satellite.  相似文献   
7.
In this paper we report on initial work toward data assimilative modeling of the Earth’s plasmasphere. As the medium of propagation for waves which are responsible for acceleration and decay of the radiation belts, an accurate assimilative model of the plasmasphere is crucial for optimizing the accurate prediction of the radiation environments encountered by satellites. On longer time-scales the plasmasphere exhibits significant dynamics. Although these dynamics are modeled well by existing models, they require detailed global knowledge of magnetospheric configuration which is not always readily available. For that reason data assimilation can be expected to be an effective tool in improving the modeling accuracy of the plasmasphere. In this paper we demonstrate that a relatively modest number of measurements, combined with a simple data assimilation scheme, inspired by the ensemble Kalman filtering data assimilation technique does a good job of reproducing the overall structure of the plasmasphere including plume development. This raises hopes that data assimilation will be an effective method for accurately representing the configuration of the plasmasphere for space weather applications.  相似文献   
8.
An analysis of properties and peculiarities of the nighttime winter foF2 increases (NWI) in the East Siberia is made on data of ionospheric station Irkutsk in the periods 1958–1992 and 2002–2009 and the empirical model of the F2 layer critical frequency under the geomagnetic quiet conditions deduced from these data (model Q-F2). It is revealed, that the NWI is the stable regularity of the quiet ionosphere over Irkutsk. The amplitude of the NWI (the difference between maximum and minimum foF2 values at night hours) is the greatest in December–January and nearly the same at low and middle solar activity. It is a peculiarity of the quiet ionosphere in the East Siberia. Maximum in night foF2 under quiet geomagnetic conditions is observed mainly after midnight (02-04 LT) and is shifted to predawn hours as solar activity increases. At low solar activity the quiet ionosphere at ∼02–04 LT shows the following properties: (a) the fluctuations of foF2 and hmF2 are in the reverse correlation but this dependence is weak; (b) very strong fluctuations of foF2 (|δfoF2| > 30%) occur seldom (∼4% of events) and almost all of them are positive; an example of very strong fluctuations of foF2 up to 60% can be an extreme increase in the foF2 on 19.12.2008; (c) the very strong enhancements of foF2 in the NWI maximum can be observed at the low geomagnetic activity, they occur more often during substorms but very seldom during geomagnetic storms. Possible reasons of these properties of NWI are discussed.  相似文献   
9.
10.
Data assimilation in conventional meteorological applications uses measurements in conjunction with a physical model. In the case of the ionised region of the upper atmosphere, the ionosphere, assimilation techniques are much less mature. The empirical model known as the International Reference Ionosphere (IRI) could be used to augment data-sparse regions in an ionospheric now-cast and forecast system. In doing so, it is important that it does not introduce systematic biases to the result. Here, the IRI model is compared to ionospheric observations from the Global Positioning System satellites over Europe and North America. Global Positioning System data are processed into hour-to-hour monthly averages of vertical Total Electron Content using a tomographic technique. A period of twelve years, from January 1998 to December 2009, is analysed in order to capture variations over the whole solar cycle. The study shows that the IRI model underestimates Total Electron Content in the daytime at solar maximum by up to 37% compared to the monthly average of GPS tomographic images, with the greatest differences occurring at the equinox. IRI shows good agreement at other times. Errors in TEC are likely due to peak height and density inaccuracies. IRI is therefore a suitable model for specification of monthly averages of Total Electron Content and can be used to initialise a data assimilation process at times away from solar maximum. It may be necessary to correct for systematic deviations from IRI at solar maximum, and to incorporate error estimation into a data assimilation scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号