首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   2篇
航天   1篇
  2014年   1篇
  2010年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
红外隐身涂料颜料发射率研究   总被引:38,自引:0,他引:38  
王自荣  余大斌  孙晓泉 《上海航天》2000,17(1):24-26,39
测试了多种颜料末及其在以酚醛树脂为粘合剂制成涂料的情况下(8 ̄14)μm波段的平均红外发射率。研究发现,金属颜料的发射率一般较低,着色颜料的发射率一般都比较高,掺锡氧化铟(ITO)半导体颜料红外发射率较低。还研究了颜料粉末发射率与将颜料制成涂料后发射率的关系。  相似文献   
2.
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m−2 s−1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.  相似文献   
3.
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号