首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航天技术   6篇
  2013年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots – 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0–400 μmol m−2 s−1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants – lettuce and radicchio were carried out at 400 μmol m−2 s−1 PPFD (high light – HL) and 220 μmol m−2 s−1 PPFD (low light – LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H2O2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H2O2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.  相似文献   
2.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   
3.
Method for estimation of Leaf Area Index (LAI) based on polarized radiance measurements is proposed. Leaf angle dependency on LAI estimation can be taken into account by considering polarization characteristics of leaves. Effectiveness of the proposed method is confirmed with the polarized radiance from tealeaves and the other needle leaf types of grasses. Convenient way to monitor quality and amount of leaves with network camera with polarization film is also proposed.  相似文献   
4.
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce (Lactuca sativa L. cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa pO2pO2) or 101 kPa total pressure (20.9 kPa pO2pO2) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.  相似文献   
5.
Silkworm could be an alternative to provide edible animal protein in Controlled Ecological Life Support System (CELSS) for long-term manned space missions. Silkworms can consume non-edible plant residue and convert plant nutrients to high quality edible animal protein for astronauts. The preliminary investigation of silkworm culture was carried out in earth environment. The silkworms were fed with artificial silkworm diet and the leaves of stem lettuce (Lactuca sativa L. var. angustana Irish) separately and the nutritional structure of silkworm was investigated and compared, The culture experiments showed that: (1) Stem lettuce leaves could be used as food of silkworm. The protein content of silkworm fed with lettuce leaves can reach 70% of dry mass. (2) The protein content of silkworm powder produced by the fifth instar silkworm larvae was 70%, which was similar to the protein content of silkworm pupae. The powder of the fifth instar silkworm larvae can be utilized by astronaut. (3) The biotransformation rate of silkworm larvae between the third instar and the fifth instar could reach above 70%. The biotransformation cycle of silkworm was determined as 24 days. (4) Using the stem lettuce leaves to raise silkworm, the coarse fiber content of silkworm excrements reached about 33%. The requirements of space silkworm culture equipment, feeding approaches and feeding conditions were also preliminarily designed and calculated. It is estimated that 2.2 m3 of culture space could satisfy daily animal protein demand for seven astronauts.  相似文献   
6.
在对天然荷叶表面观察的基础上,通过改变电流密度控制电镀层表面的形貌,制备出了仿荷叶结构的铜表面.随着电镀电流密度的逐渐增大,接触角先增大后减小,当电流密度为0.08 A/cm2时,镀层的表面结构与荷叶表面最接近,其疏水效果最好,接触角最大,达到了153.5°,滚动角为7.9°(小于10°).这种表面未经任何修饰就产生了超疏水性.这是处于Cassie模型的一种亚稳定状态,只要表面形貌特征满足一定条件,就可使水滴在亲水基体上处于Cassie模型的亚稳态,从而有可能产生疏水性甚至超疏水性.对亲水材料的疏水机理进行了探讨,这些结果对亲水基体上超疏水性表面的制备和现有疏水理论的理解具有一定的意义.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号