首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The continual monitoring of the low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 to 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors.  相似文献   
2.
Data from the Massachusetts Institute of Technology Lincoln Laboratory Long Range Imaging Radar (known as the Haystack radar) have been used in the past to examine families of objects from individual satellite breakups or families of orbiting objects that can be isolated in altitude and inclination. This is possible because, for some time after a breakup, the debris cloud of particles can remain grouped together in similar orbit planes. This cloud will be visible to the radar, in fixed staring mode, for a short time twice each day, as the orbit plane moves through the field of view. There should be a unique three-dimensional pattern in observation time, range, and range rate which can identify the cloud. Eventually, through slightly differing precession rates of the right ascension of ascending node of the debris cloud, the observation time becomes distributed so that event identification becomes much more difficult.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号