首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
航空   1篇
航天技术   3篇
  2023年   2篇
  2021年   1篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
  总被引:1,自引:1,他引:0  
提出利用全球导航卫星系统反射信号的干涉方法(GNSS-IR)进行测高。深入分析全球导航卫星系统反射信号的多径信号模型(GNSS-MR),在此基础上提出单天线测高模型,旨在获取多径信号信噪比(SNR)频率信息,从而反演出高度信息。Lomb-Scargle(LS)谱分析方法是单天线测高模型中常用的频率提取方法;提出了基于解析模型拟合的方法对多径信号信噪比数据提取频率,同样可以准确获取频率信息,从而反演出天线到地面的高度。在此基础上,讨论了单天线测高的最大测量高度和接收机需要满足的最小输出率。由实验数据分析得出:传统LS谱分析方法和拟合法在反演效果最优时,即LS谱分析方法在高度角上限为17°时,均方根误差为0.028 75 m;拟合法在高度角上限为21°时,均方根误差为0.024 85 m。通过比较不同高度角上限的均方根误差,可以获得最优化的高度反演条件,同时也表明了拟合法的可行性。  相似文献   
2.
In recent years, with the continuous development of Global Navigation Satellite System (GNSS), it has been applied not only to navigation and positioning, but also to Earth surface environment monitoring. At present, when performing GNSS-IR (GNSS Interferometric Reflectometry) snow depth inversion, Lomb-Scargle Periodogram (LSP) spectrum analysis is mainly used to calculate the vertical height from the antenna phase center to the reflection surface. However, it has the problem of low identification of power spectrum analysis, which may lead to frequency leakage. Therefore, Fast Fourier Transform (FFT) spectrum analysis and Nonlinear Least Square Fitting (NLSF) are introduced to calculate the vertical height in this paper. The GNSS-IR snow depth inversion experiment is carried out by using the observation data of P351 station in PBO (Plate Boundary Observatory) network of the United States from 2013 to 2016. Three algorithms are used to invert the snow depth and compared with the actual snow depth provided by the station 490 in the SNOTEL network. The observations data of L1 and L2 bands are respectively used to find the optimal combination between different algorithms further to improve the accuracy of GNSS-IR snow depth inversion. For L1 band, different snow depths correspond to different optimal algorithms. When the snow depth is less than 0.8 m, the inversion accuracy of NLSF algorithm is the highest. When the snow depth is greater than 0.8 m, the inversion accuracy of FFT algorithm is higher. Therefore, according to the different snow depth, a combined algorithm of NLSF + FFT is proposed for GNSS-IR snow depth inversion. Compared with the traditional LSP algorithm, the inversion accuracy of the combined algorithm is improved by 10%. For L2 band data, the results show that the accuracy of snow depth inversion of various algorithms do not change with the variations of snow depth. Among the three single algorithms, the inversion accuracy of FFT algorithm is better than that of LSP and NLSF algorithms.  相似文献   
3.
Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology provides a new means of snow depth detection. Multi-satellite and multi-Signal-to-Noise Ratio (SNR) provide more data for daily high-precision snow depth retrieval, but also face the problem of data fusion and effective utilization. Therefore, this study proposes a robust estimation algorithm based on multi-satellite and multi-SNR fusion applied to the observations of a GNSS station in Alaska. This study uses four solutions (Savg, Smed, SRE_avg and SRE_med) to carry out multi-system fusion snow depth inversion and precision comparison research. The Savg has more obvious disadvantages, which is not suitable for snow depth assessment. The SRE_avg and SRE_med have better snow depth retrieval effects in the snowy periods. The correlation coefficient (R), root mean square error (RMSE) and mean error (ME) of the calculated snow depth using the robust estimation algorithm with respect to the nearest in-situ measurements reached 0.759, 3.7 cm and ?1.4 cm, respectively. Compared with the Smed, the R is increased by 2.0 %, the RMSE corresponds to an improvement of 2.6 %. Moreover, the ME of the snow depth retrievals, as an indicator of the measurement bias, has significantly decreased by 6.7 %. The result also shows that the snow depth inversion by the robust estimation algorithm is more consistent with the in-situ measurements, further extending and advancing the optimal algorithm for snow depth retrieval.  相似文献   
4.
GNSS-IR技术作为一种近地表遥感的新兴手段,在水库水位监测方面凭借其成本低、精度高等优势成为了研究热点。为了提高GNSS-IR技术反演水库水位变化的精度,提出了利用GPS、BDS双系统观测量基于小波分解与BP神经网络联合的方法反演水库水位变化。选取位于南水北调山东境内双王城水库GNSS变形观测站2017年10月1日—12月26日共87天的信噪比(SNR)数据为研究对象,分别利用小波分解和二阶多项式拟合两种方法消除其趋势项并生成SNR残差序列,然后进行Lomb-Scargle谱分析得到水库水位高度变化值,并与实测水位结果相比较。结果表明:各频段SNR利用小波分解和二阶多项式反演水位变化的平均均方根误差分别为0.1062m和 0.2245m,说明小波分解去趋势项的方法更优。最后,在小波分解去趋势项的基础上,利用阈值筛选出融合所用的频段(S1C、S2L、S5Q和S7I),分别采用均值算法、中值算法、随机森林算法和BP神经网络算法对GPS、BDS多频多模信号进行水库水位的融合反演。结果表明,对于水面较为平静的环境,以上算法均能实现厘米级的反演精度,其中BP神经网络算法用于水位反演的效果更优。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号