首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   3篇
航天技术   3篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
种层厚度对油麦兼用集排器供种装置充种性能的影响   总被引:1,自引:0,他引:1  
为研究种层厚度对油麦兼用集排器供种装置充种性能的影响,该文运用EDEM(engineering discrete element method)软件和高速摄像技术,对不同种层调节板倾角和种层厚度的种群运动与供种性能进行了仿真与试验研究。EDEM仿真分析了种层厚度与转速对种群压力、种群与供种机构切向力和充种数量的影响;台架试验研究了种层厚度对充填角和供种性能的影响。结果表明:倾角为60°种层调节板的种群压力较大,充填角和充种性能均较优;种群压力和切向力随纵向距离增加而增加,随横向距离增加而降低;随转速增加,种群压力趋于稳定,切向力随之增加,单个型孔充种数量降低5%。转速为10~50 r/min时,初始充填角、充填角和供种速率均随纵向距离增加和横向距离降低而增加,但充种数量变异系数呈先降后升的趋势。种群压力、切向力、初始充填角、充填角与供种速率均呈极显著正相关,种群压力和切向力与初始充填角和充填角均呈极显著正相关,种层厚度和转速影响充填角分别源于种群压力和切向力。在纵向距离分别为15和20 mm,横向距离为46 mm条件下,油菜、小麦供种速率变异系数和破损率分别均低于1.0%和0.1%。田间试验表明该优化种层厚度条件下的集排器油菜种植密度满足农艺种植要求。该研究明确了种层厚度影响油麦兼用集排器供种装置充种性能的原因,为油麦兼用集排器供种装置种层厚度调节和结构改进提供了参考。  相似文献   
2.
采用正交试验设计的方法,对在混合酶(纤维素酶 Celluclast 1.5 l,β-葡萄糖苷酶 Novozym 188)与Tween-20协同作用下,经乙醇预处理的麦草酶水解工艺条件进行研究,详细讨论了反应温度、底物浓度、Tween-20用量、纤维素酶用量对还原糖浓度和得率的影响,并对酶水解工艺进行优化.结果表明,最佳工艺条件为反应温度50 ℃,底物质量浓度100 g·L~(-1),Tween-20用量0.03 g·g~(-1),纤维素酶用量15 FPU·g~(-1).在此条件下,水解72 h时,还原糖质量浓度和得率分别达到46.1 g·L~(-1)和41.5%.  相似文献   
3.
As part of an ESA MELiSSA investigation into advanced life support (ALS) candidate crop cultivar selection and growth requirements, the University of Guelph’s Controlled Environment Systems Research Facility (CESRF) conducted a case study on growth and development of four durum wheat cultivars (Triticum turgidum var durum) grown hydroponically under controlled conditions in a sealed environment. Cultivars tested were Canadian developed Avonlea, Commander, Eurostar and Strongfield. There were few fundamental differences in durum quality parameters between hydroponically and field grown wheat, however yields of Eurostar and Strongfield exceeded those of field trials by 41% and 87% respectively.  相似文献   
4.
在目前国家按保护价敞开收购农民粮食的情况下,将确定粮食质量这一产权配置给征收人员导致了租金的存在,而对交纳主体这一产权未加约束使寻租活动最终产生.因此解决这一问题的途径包括将确定粮食质量的产权配置给农民和确保农民成为惟一的交纳主体等.  相似文献   
5.
The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of “wet incineration” developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m−2 · day−1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m−2 · day−1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.  相似文献   
6.
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号