首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航天技术   14篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
The Lambert–Amery System is the largest glacier–ice shelf system in East Antarctica, draining a significant portion of the ice sheet. Variation in ice sheet discharge from Antarctica or Greenland has an impact on the rate of change in global mean sea level; which is a manifestation of climate change. In conjunction with a measure of ice thickness change, ice sheet discharge can be monitored by determining the absolute velocities of these glaciers.  相似文献   
2.
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth’s atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.  相似文献   
3.
The Meteorology Department of India has been measuring vertical column density of NO2 at Maitri (70.7°S, 11.7°E), Antarctica since July 1999 using a Mark IV, Brewer Ozone Spectrophotometer. Maitri is situated at the south of the Antarctic circle. An analysis of 6 years of data shows that NO2 column has seasonal variation with a maximum value during summer. It is also found that during the period when sun does not set, the NO2 column exhibits a diurnal variation, with a peak around noon and lower values in the morning and afternoon hours. Using a simple steady-state chemical reaction scheme, an attempt has been made to explain these features.  相似文献   
4.
5.
We report the existence of rapid variations in (effective) geomagnetic cutoff rigidity (Rc) between the equatorial and Antarctic zones adjacent to the Andes Mountains, revealed by the variation rate of geomagnetic cutoff rigidity (VRc) in the period 1975–2010. Our analysis is based on empirical records and theoretical models of the variations in cosmic rays and on the structure of geomagnetic fields. These have given us a different view of variations in Rc in time and space along the 70°W meridian, where secular variations in the geomagnetic field are strongly influenced by the proximity of the South Atlantic Magnetic Anomaly (SAMA), one of the most important characteristics of the terrestrial magnetic field that affects our planet, close from the equator to the 50°S parallel and from South America to South Africa. The VRc presents rapid changes in mid-latitudes where SAMA exerts its influence despite the existence of smooth changes in the geomagnetic field. This shows that these changes occur mainly in the spatial configuration, rather than in the temporal evolution of Rc. The analysis was performed using measurements from the Chilean Network of Cosmic Rays and Geomagnetism Observatories, equipped with BF-3 and latest generation He-3 neutron monitors, Fluxgate magnetometers, geomagnetic reference field (IGRF) and Tsyganenko 2001 model (just for completeness).  相似文献   
6.
The International Heliophysical Year offers a good opportunity to develop and coordinate studies on the Sun–Earth system by using a large variety of simultaneous data obtained by satellite/spacecraft and ground based instruments. Among these data we recall the ones coming from solar and interplanetary medium observations, auroral, neutron monitor, geomagnetic field, ionospheric, meteorological, and other atmospheric observatories. In this context, an Information System for the Italian Research in Antarctica has started in 2003, aiming to collect information on the scientific research projects funded by the National Antarctic Research Program of Italy since its establishment (1985). It belongs to Joint Committee on Antarctic Data Management of Scientific Committee on Antarctic Research as Italian Antarctic Data Center. This project, as the Italian Polar Database, gathers also information on research activities conducted in North Pole regions. This Information System can be a relevant resource for capacity building associated with the International Heliophysical Year, especially for people involved in interdisciplinary researches. We describe the present status of the Italian Polar Data Center and its potential use.  相似文献   
7.
太阳活动区R9077引起的强烈吸收事件   总被引:1,自引:0,他引:1  
利用南极中山站的观测数据分析了太阳活动区R9077所引起的强烈吸收事件,其中2000年7月14日的太阳质子事件引起了持续3天多强烈的极盖吸收,同时,激烈的太阳活动使磁层处于极度扰动状态,磁层高能粒子沉降使许多持续时间较短的吸收峰叠加在极盖吸收背景之上,最突出的是7月1日的吸收增强事件,其最大值达26dB。这是自1997年2月中山站安装成像式宇宙噪声接收机以来观测到的最强的吸收,另一个较突出的吸收峰发生在14日1753UT前后,本文还讨论了产生这些吸收的原由。  相似文献   
8.
Slope correction is important to improve the accuracy of satellite radar elevation measurements by mitigating the slope-induced error (SE), especially over uneven ground surfaces. Although several slope correction methods have been proposed, guidance in the form of stepwise algorithm on how to implement these methods in processing radar altimetric data at the coding level, and the differences among these methods need to be presented and discussed systematically. In this paper, three existing types of slope correction methods—the direct method (DM), intermediate method (IM), and relocation method (RM, further divided into RM1 and RM2)—are described in detail. In addition, their main differences and features for various scientific applications are analyzed. We conduct a systematic experiment with CryoSat-2 Low Resolution Mode (LRM) data in a physically stable area around Dome Argus in East Antarctica, where in-situ measurements were available for comparison. The slope correction is implemented separately using the three methods, with the latest high-accuracy Reference Elevation Model of Antarctica (REMA) as the a-priori topography model. The bias and precision of the slope-corrected CryoSat-2 data results from the RM2 is ?0.18 ± 0.86 m based on the comparison with the field Global Navigation Satellite System (GNSS) data. The results from the RM2 indicate higher precision compared to those from the RM1. According to the correlation analysis of the slope-corrected CryoSat-2 data results (RM1 and RM2), the bias enlarges and the precision becomes worse when the surface slope increases from 0 to 0.85°. After a comprehensively comparative analysis, we find that the results from the RM1 and RM2 are superior in precision (0.93 m and 0.86 m) with respect to the GNSS data. The relatively low precision (1.22 m) from the IM is due to the potential error from the a-priori digital elevation model (DEM). The DM has the lowest precision (2.66 m). Another experiment over rough topography in West Antarctica is carried out for comparison, especially between the RM1 (precision of 15.27 m) and RM2 (precision of 16.25 m). In general, the RM is recommended for the SE elimination among the three methods. Moreover, the RM2 is firstly considered over smooth topography due to the superior performance in bias and precision, while the RM1 is more suggested over the rough topography because of the slightly smaller bias and better precision. The IM relies much on the accuracy of the a-prior DEM and is not usually recommended, because of the strict requirement in the sampling time between the radar altimetry data and the a-priori DEM to avoid any surface change over time.  相似文献   
9.
Antarctica is a continent that crucial for studying climate change and its progression across time, as well as analyzing and forecasting local and global change. In this environment, due to the challenges caused by sea-level rise, storm surges, and tsunamis, sustainability is a critical concern, particularly for coastal regions. As a result, the long-term observations that will be conducted in Antarctica are critical for monitoring the adverse impacts of climate change. In recent years, many monitoring approaches, both space, and ground-based are performed to monitor sea/ice level trends in space-based scientific investigations conducted in and around the region. In the study, based on one year of observations from the Palmer GNSS Station, the GNSS Reflectometry technique was used to measure the sea level on the Antarctic Peninsula (PALM). GNSS Station observations were analyzed with a Lomb-Scargle periodogram to monitor sea-level changes, and results were validated with data from a co-located tide gauge (TG). The results show that the correlation between GNSS-R sea-level changes and tidal sea-level changes is found as 0.91.  相似文献   
10.
The polarization pattern of ULF pulsations (f ≈ 1–100 mHz) at Terra Nova Bay (Antarctica, CGM λ ∼ 80°) has been determined for the entire 2003, soon after the solar maximum. A comparison with the results of previous investigations, conducted at the same station close to the solar minimum (1994–96), allows to focus common elements and major differences among different frequency bands which persist through the entire solar cycle. Basically, between f ∼ 1.5 and 5 mHz, the day can be divided into four sectors with alternate polarizations. The local time and latitudinal dependence of the observed pattern can be tentatively interpreted in terms of a latitude of resonant field lines reaching λ ∼ 80° in the noon sector; on the other hand, resonance effects of lower latitude field lines can be clearly identified also far from the noon meridian when the station moves into the deep polar cap. Moreover, in the morning sector the resonance region would extend to lower latitudes than in the evening sector. The proposed profile of the resonant region can interpret also the results obtained at other cusp/auroral stations and appears consistent with that one inferred in the northern hemisphere at smaller latitudes. The resonance region progressively shifts toward lower latitude with increasing frequency; correspondingly, the four-sector pattern progressively disappears at TNB. Above f ∼ 20 mHz, the experimental observations might suggest an additional contribution from Sunward propagating waves, possibly via the magnetotail lobes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号