首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航天技术   7篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
排序方式: 共有7条查询结果,搜索用时 109 毫秒
1
1.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   
2.
Various balloon systems intended as scientific platforms to float in the atmosphere of Venus at altitudes between about 35 and 65 km are briefly reviewed. Previous predictions of the altitude oscillations of balloons filled with helium gas and water vapor are largely confirmed through numerical simulation and analysis. The need for refined thermal modelling is emphasised. Several novel technical concepts are introduced. It is concluded that phase change balloons would be more suitable than non-condensing super pressure gas balloons when repeated altitude excursions are a mission requirement.  相似文献   
3.
This paper describes the results of ongoing technology development activities for a Venus spherical superpressure balloon capable of flying for long durations (30 days) in the middle cloud layer at an altitude of 55.5 km. Data is presented from a successful aerial deployment and inflation flight experiment on a 5.5 m diameter prototype balloon conducted at a 2.5 km altitude above the Earth. Although the balloon in that test was not released for free flight, all other steps in the deployment and inflation process were successfully executed. Experimental and computational results are also presented from an investigation of the stress concentration phenomenon at the junction of the metal end fitting and fabric end cap of the prototype Venus balloon. Good agreement was found between the simulation and experimental results and a stress concentration factor of 1.55 determined for this end cap design compared to the expectations of thin membrane theory. Finally, results are presented for a new, second-generation Venus balloon material utilizing Aclar™ film instead of Teflon. Optical property and sulfuric acid tolerance data are presented for this material based on laboratory testing of samples.  相似文献   
4.
This paper describes experimental results from a development program focused on maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope power source waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.  相似文献   
5.
Various aerial platforms intended for long endurance survey of the Titan surface are presented. A few novel concepts are introduced, including a heated methane balloon and a balloon with a tethered wind turbine. All the concept options are predicted to have lower scientific payload fractions than the Huygens probe. It is concluded that the selection of the best aerial platform option depends on more accurate mass estimates and a clear decision on whether, or not, in situ surface composition measurements are required in conjunction with aerial remote sensing.  相似文献   
6.
This paper presents analyses, designs and experimental results for the gas management system of a hydrogen-filled blimp capable of flying in the lower atmosphere of Titan for a period of 1 year or more. The engineering strategy has two basic elements: first, to minimize leakage rates from the blimp envelope and ballonets; and second, to provide auxiliary subsystems to mitigate the life-limiting effects resulting from those leaks. Leak minimization is achieved through use of cryogenically compatible balloon materials and adhesives, and selection of ballonet geometries that minimize pinhole generation via folding and material fatigue. Hydrogen loss to the environment through leaks in the blimp envelope is compensated by producing new hydrogen through chemical processing of atmospheric methane. Nitrogen leaked into the blimp from the ballonets is removed by a carbon absorption system and periodically vented to the atmosphere. Data is presented on the measured leak rate from a full scale (13 m long) prototype blimp envelope and on the performance of a low mass, low power prototype device that generates hydrogen from methane. These results are factored in to an overall system design that quantifies the mass and power requirements for a minimum 1 year operational lifetime.  相似文献   
7.
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 m3 and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号