首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
航空   5篇
航天技术   44篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2014年   3篇
  2013年   5篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   24篇
  2003年   1篇
  2000年   3篇
  1994年   1篇
  1984年   2篇
排序方式: 共有49条查询结果,搜索用时 46 毫秒
1.
I show how general relativistic 3D radiation hydrodynamic equations can be derived from the tensor formulation. Radiation quantities are differentiated with respect to the fixed coordinates while the interaction between matter and radiation is described by the comoving frame quantities. The formulation is covariant, and can be applied to any coordinates or spacetime; I show the derivation for the Schwarzschild spacetime as an example.  相似文献   
2.
I present a short overview of the behavior and properties of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) seen in the accreting millisecond X-ray pulsar SAX J1808.4–3658. I will focus on the behavior of the upper frequency QPO as a function of time and count rate as seen during the 2002 outburst of this source. I will also discuss briefly the correlated behavior of this QPO with QPOs at lower frequencies (several tens of hertz).  相似文献   
3.
Broad-band spectra of accreting X-ray binary pulsars can be fitted by a phenomenological model composed of a power law with a high energy rollover above 10 keV, plus a blackbody component with a temperature of few hundred eV. While, at least qualitatively, the hard tail can be explained in terms of (inverse) Compton scattering, the origin of the soft component cannot find a unique explanation. Recently, a qualitative picture able to explain the overall broad-band spectrum of luminous X-ray pulsars was carried out by taking into account the effect of bulk Comptonization in the accretion column. After a review of these recent theoretical developments, I will present a case study of how different modeling of the continuum affect broad features, in particular the cyclotron resonance features in Vela X-1.  相似文献   
4.
The state of subsonic propeller is intermediate between the states of supersonic propeller and accretor in the evolutionary tracks of magnetized compact stars. The rotational rate of a star at this stage decelerates due to the interaction between its magnetosphere and the surrounding hot, quasi-static plasma envelope. The magnetospheric radius is smaller than the corotation radius and the boundary of the magnetosphere is stable with respect to interchange instabilities. The rate of the mass flux from the inner radius of the envelope to the stellar surface is limited by the rate of plasma diffusion into the magnetic field of the star. As a result, the subsonic propeller would appear as a low-luminosity accretion-powered pulsar with a soft X-ray spectrum.  相似文献   
5.
Hueso  Ricardo  Guillot  Tristan 《Space Science Reviews》2003,106(1-4):105-120
The formation of planetary systems is intimately tied to the question of the evolution of the gas and solid material in the early nebula. Current models of evolution of circumstellar disks are reviewed here with emphasis on the so-called “alpha models” in which angular momentum is transported outward by turbulent viscosity, parameterized by an dimensionless parameter α. A simple 1D model of protoplanetary disks that includes gas and embedded particles is used to introduce key questions on planetesimal formation. This model includes the aerodynamic properties of solid ice and rock grains to calculate their migration and growth. We show that the evolution of the nebula and migration and growth of its solids proceed on timescales that are generally not much longer than the timescale necessary to fully form the star-disk system from the molecular cloud. Contrary to a widely used approach, planet formation therefore can neither be studied in a static nebula nor in a nebula evolving from an arbitrary initial condition. We propose a simple approach to both account for sedimentation from the molecular cloud onto the disk, disk evolution and migration of solids. Giant planets have key roles in the history of the forming Solar System: they formed relatively early, when a significant amount of hydrogen and helium were still present in the nebula, and have a mass that is a sizable fraction of the disk mass at any given time. Their composition is also of interest because when compared to the solar composition, their enrichment in elements other than hydrogen and helium is a witness of sorting processes that occured in the protosolar nebula. We review likely scenarios capable of explaining both the presence of central dense cores in Jupiter, Saturn, Uranus and Neptune and their global composition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   
7.
We have analysed 9 years of data from the All Sky Monitor on the Rossi X-ray Timing Explorer for 2S 0114+650 to study the evolution of its spin, binary, and super-orbital periods. The spin history of the neutron star in this system exhibits torque reversals lasting 1 year. The newly discovered super-orbital period has remained stable over the 9-year span, making 2S 0114+650 the fourth known system to exhibit stable super-orbital modulation. We compare its super-orbital period evolution with those of the other three such systems.  相似文献   
8.
We study the possible origin of hydrodynamic turbulence in cold accretion disks such as those in star-forming systems and quiescent cataclysmic variables. As these systems are expected to have neutral gas, the turbulent viscosity is likely to be hydrodynamic in origin, not magnetohydrodynamic. Therefore, MRI will be sluggish or even absent in such disks. Although there are no exponentially growing eigenmodes in a hydrodynamic disk because of the non-normal nature of the eigenmodes, a large transient growth in the energy is still possible, which may enable the system to switch to a turbulent state. For a Keplerian disk, we estimate that the energy will grow by a factor of 1000 for a Reynolds number close to a million.  相似文献   
9.
We report on the analysis of XMM-Newton archival data of EXO 0748–676. We studied changes of the continuum spectra due to the presence of photo-ionized plasma on the line of sight. We show that the ionization degree of the plasma could change largely during the X-ray bursts and the dips. These changes can significantly modify the soft-band spectrum, which was in fact observed from EXO 0748–676. We discuss the effect of the photo-ionized plasma on the continuum spectra in comparison with a frequently used model such as partial covering absorption.  相似文献   
10.
The physics of low velocity collisions (5 m/s to 40 m/s) between basalt bodies ranging in size from 1 m to 10 km is studied in an effort to investigate the early phases of planetesimal accretions. To assess the importance of the internal structure of planetesimals on the outcome of the collisions, we model them either as solid spheres or as rubble piles with a filling factor of 0.5. The collisions are simulated using a three dimensional Smooth Particle Hydrodynamics (SPH) code that incorporates the combined effects of material strength and a brittle fragmentation model. This approach allows the determination not only of the mass of the largest fragments surviving the collisions but also their dynamical characteristics. We find that low velocity collisions are for equal incoming kinetic energy per gram of target material considerably more efficient in destroying and dispersing bodies than their high velocity counterparts. Furthermore, planetesimals modeled as rubble piles are found to be characterized by a disruption threshold about 5 times smaller than solid bodies. Both results are a consequence of a more efficient momentum transfer between projectile and fragments in collisions involving bodies of comparable sizes. Size and shape dependent gas drag is shown to provide relative collision velocities between similar meter-sized objects well in excess of the critical disruption threshold of either rubble piles or solid bodies. Unless accretion can proceed avoiding collisions between bodies of similar masses, the relative weakness of bodies in this size range creates a serious bottleneck for planetesimal growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号