首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航天技术   6篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The present paper deals with the application of Support Vector Machine (SVM) and image analysis techniques on NOAA/AVHRR satellite image to detect hotspots on the Jharia coal field region of India. One of the major advantages of using these satellite data is that the data are free with very good temporal resolution; while, one drawback is that these have low spatial resolution (i.e., approximately 1.1 km at nadir). Therefore, it is important to do research by applying some efficient optimization techniques along with the image analysis techniques to rectify these drawbacks and use satellite images for efficient hotspot detection and monitoring. For this purpose, SVM and multi-threshold techniques are explored for hotspot detection. The multi-threshold algorithm is developed to remove the cloud coverage from the land coverage. This algorithm also highlights the hotspots or fire spots in the suspected regions. SVM has the advantage over multi-thresholding technique that it can learn patterns from the examples and therefore is used to optimize the performance by removing the false points which are highlighted in the threshold technique. Both approaches can be used separately or in combination depending on the size of the image. The RBF (Radial Basis Function) kernel is used in training of three sets of inputs: brightness temperature of channel 3, Normalized Difference Vegetation Index (NDVI) and Global Environment Monitoring Index (GEMI), respectively. This makes a classified image in the output that highlights the hotspot and non-hotspot pixels. The performance of the SVM is also compared with the performance obtained from the neural networks and SVM appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser false alarm rate. The results obtained are found to be in good agreement with the ground based observations of the hotspots. This type of work will be quite helpful in the near future to develop a hotspots monitoring system using these operational satellites data.  相似文献   
2.
Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal’s cultivation, steppes and bar soil.  相似文献   
3.
In this work historical investigations and modern results of classification of the Krasnoyarsk Reservoir are presented. The paper presents results of studying the dynamics of phytopigments and other optically active components, using multispectral satellite data. Several approaches to interpreting satellite data for optically complex inland water bodies are offered. Based on results of historical investigations it is shown that the spatial distribution of phytoplankton in the reservoir stems back to the time of its formation. Color index in the red spectral region (CIR) is introduced. A relationship between the color index and chlorophyll concentration is investigated. The CIR, derived from the AVHRR data, has been found to be related to chlorophyll concentration. Based on MODIS data, the waters of the Krasnoyarsk Reservoir have been classified in accordance with their optical spectral variability, using the technique of unsupervised IsoData classification. An empirical relationship between multispectral MODIS data and the ground-truth measurements of chlorophyll concentration has been found.  相似文献   
4.
The aim of this research was to forecast monthly mean air temperature based on remote sensing and artificial neural network (ANN) data by using twenty cities over Turkey. ANN contained an input layer, hidden layer and an output layer. While city, month, altitude, latitude, longitude, monthly mean land surface temperatures were chosen as inputs, and monthly mean air temperature was chosen as output for network. Levenberg–Marquardt (LM) learning algorithms and tansig, logsig and linear transfer functions were used in the network. The data of Turkish State Meteorological Service (TSMS) and Technological Research Council of Turkey–Bilten for the period from 1995 to 2004 were chosen as training when the data of 2005 year were being used as test. Result of research was evaluated according to statistical rules. The best linear correlation coefficient (R), and root mean squared error (RMSE) between the estimated and measured values for monthly mean air temperature with ANN and remote sensing method were found to be 0.991–1.254 K, respectively.  相似文献   
5.
In this paper, the estimation capacities of MLR and ANN are investigated to estimate monthly-average daily SR over Turkey. The satellite data are used for 73 different locations over Turkey. Land surface temperature, altitude, latitude, longitude and month are offered as the input variables for modeling ANN and MLR to get SR. Estimations of SR are evaluated with the meteorological values by using the statistical bases. The obtained results indicated that the ANN model could achieve a satisfactory performance when compared to the MLR model. Moreover, it is understood that more accurate results in estimation of SR are obtained in the use of satellite data, rather than the use of meteorological station data. Finally, the built ANN model is used to estimate the yearly average of daily SR over Turkey. As a result, satellite-based SR map for Turkey is generated.  相似文献   
6.
The purpose of this study was twofold: to develop a methodology for the estimation of land surface temperature for non-urban areas and to analyze the sensitivity of the methodology. The key element of the methodology was the development of emissivity maps based on CORINE Land Cover and the ASTER spectral library. Land surface temperatures were derived from NOAA/AVHRR data and the methodology was applied at a national scale in Greece, with emphasis given to non-urban areas. A sensitivity analysis was performed in order to determine the variables that mainly affect the estimation of land surface temperature. A varying propagation error was identified depending on the temperature and humidity of the atmosphere, as well as the land cover type. The methodology was applied to a series of 25 AVHRR images and the results were compared to in-situ measurements from representative stations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号