首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   169篇
  国内免费   133篇
航空   462篇
航天技术   222篇
综合类   47篇
航天   191篇
  2024年   3篇
  2023年   10篇
  2022年   40篇
  2021年   51篇
  2020年   55篇
  2019年   33篇
  2018年   36篇
  2017年   41篇
  2016年   44篇
  2015年   30篇
  2014年   36篇
  2013年   45篇
  2012年   52篇
  2011年   64篇
  2010年   52篇
  2009年   48篇
  2008年   46篇
  2007年   45篇
  2006年   49篇
  2005年   32篇
  2004年   22篇
  2003年   14篇
  2002年   11篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   11篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1984年   2篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
1.
Equatorial plasma bubbles (EPBs) are common features of the equatorial and low-latitude ionosphere and are known to cause radio wave scintillation which leads to the degradation of communication and navigation systems. Although these structures have been studied for decades, a full understanding of their evolution and dynamics remains important for space weather mitigation purposes. In this study, we present cases of EPBs occurrences around April and July 2012 geomagnetic storm periods over the African equatorial sector. The EPBs were observed from the Communications/Navigation Outage Forecasting System (C/NOFS) and generally correlated well to the ionospheric irregularities observed from the Global Positioning System total electron content (GPS-TEC) measurements (rate of TEC change, ROT). This study revealed that the evolution of the EPBs during moderate storms is controlled by the strength of the daytime equatorial electrojet (EEJ) currents regardless of the strength of the equatorial ionization anomaly (EIA), the latter is observed during the July storm case in particular. These effects were more evident during the main and part of the early recovery phases of the geomagnetic storm days considered. However, the evening hours TEC gradients between regions of the magnetic equator and ionization crests also played roles in the existence of ionospheric irregularities.  相似文献   
2.
The fluxgate magnetometer experiment onboard the ROSETTA spacecraft aims to measure the magnetic field in the interaction region of the solar wind plasma with comet 67P/Churyumov-Gerasimenko. It consists of a system of two ultra light (about 28 g each ) triaxial fluxgate magnetometer sensors, mounted on the 1.5 m long spacecraft boom. The measurement range of each sensor is ±16384 nT with quantization steps of 31 pT. The magnetometer sensors are operated with a time resolution of up to 0.05 s, corresponding to a bandwidth of 0–10 Hz. This performance of the RPC-MAG sensors allows detailed analyses of magnetic field variations in the cometary environment. RPC-MAG furthermore is designed to study possible remnant magnetic fields of the nucleus, measurements which will be done in close cooperation with the ROSETTA lander magnetometer experiment ROMAP.  相似文献   
3.
设计并加工了激光推进器实验模型,以空气为推进工质,利用脉冲式CO2激光器,研究了空气压强对激光推进器冲量耦合系数影响。实验结果表明,空气压强对激光推进器性能有显著影响。在文中实验条件下,当空气压强大于6 kPa时,激光推进器冲量耦合系数随压强减小而减少较慢;当空气压强小于6 kPa时,激光推进器冲量耦合系数随压强减小而减少很快。  相似文献   
4.
国外几种新型微化学推力器   总被引:14,自引:0,他引:14  
介绍了国外几种以微机电系统 (MEMS)技术为基础的液体和固体微化学推力器。这些新型微化学推力器具有MEMS技术微型化、低成本和批量生产的优点 ,并考虑了体积限制和高度集成等空间限制 ,能产生 10 -6~ 10N·s的推力脉冲 ,可用于微型卫星和纳米卫星的姿态调整、变轨和定向的精确控制。同时阐述了这几种微推力器结构特点和制造工艺 ,并与其他类型的推进器进行了比较  相似文献   
5.
空间飞行体与等离子体在压缩区内的非稳态相互作用研究   总被引:1,自引:1,他引:1  
研究了空间飞行体在运动过程中,其前端压缩区内飞行体与等离子体的、非稳态相互作用问题,得到了在强天线辐射源高频场作用下的控制方程.通过计算表明,飞行体上的天线可作为调制不稳定性的激发源,在等离子体中激发起很强的电磁孤波.  相似文献   
6.
 通过试验认为微束等离子焊接钛合金薄板的保护问题,关键在于控制施焊时焊缝处于700℃以上的加热范围,和700℃到400℃的冷却时间。并论证了以氧的污染层厚度作为钛合金焊接污染程度判据的合理性。本文采用电子探针法对氧污染层厚度进行了测定,求出污染方程。从而。使微束等离子焊接钛合金薄板的污染问题,可通过调整焊接规范进行控制。  相似文献   
7.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
8.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
9.
利用调制脉冲产生的余辉等离子体的参数测量表明:等离子体空间电位和电子温度的衰变是重要的,它在余辉等离子体的密度衰变过程研究中必须予以考虑.对容器中余辉等离子体密度径向分布的测量结果与理论预言是一致的.  相似文献   
10.
The purpose of this work is to report the experimental evidences for the influence of perturbations in the electron density in the dayside mid-latitude ionosphere, that are caused by high-frequency heating of the F2 layer, on the GNSS signals. The experiments were carried out at the Sura heater (Radio Physical Research Institute, N. Novgorod). During the sessions of ionospheric heating with different time modulations of the radiated power the rays linking the navigational satellites with the ground receiver intersected the heated region. Variations in the total electron content (TEC) were studied; these variations are proportional to the reduced phases of navigational signals. It is shown that with the square-wave modulation of the radiated power (with periods of 1, 6, 10 and 15 min), perturbations with periods of the main modulation of heating and its harmonics appear in the spectrum of TEC variations. Examples are presented of identification of the heating-induced variations in TEC, including determination of the amplitudes and time characteristics of these variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号