首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
航空   5篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
This paper describes the potentials of an aircraft model without and with winglet attached with NACA wing No. 65-3-218. Based on the longitudinal aerodynamic characteristics analyzing for the aircraft model tested in low subsonic wind tunnel, the lift coefficient (CL) and drag coefficient (CD) were investigated respectively. Wind tunnel test results were obtained for CL and CD versus the angle of attack α for three Reynolds numbers Re (1.7×105, 2.1×105, and 2.5×105) and three configurations (configuration 1: without winglet, configuration 2: winglet at 0° and configuration 3: winglet at 60°). Compared with conventional technique, fuzzy logic technique is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between lift coefficients and drag coefficients with free-stream velocities and angle of attacks, and to illustrate how fuzzy expert system (FES) might play an important role in prediction of aerodynamic characteristics of an aircraft model with the addition of winglet. In this paper, an FES model was developed to predict the lift and drag coefficients of the aircraft model with winglet at 60°. The mean relative error of measured and predicted values (from FES model) were 6.52% for lift coefficient and 4.74% for drag coefficient. For all parameters, the relative error of predicted values was found to be less than the acceptable limits (10%). The goodness of fit of prediction (from FES model) values were found as 0.94 for lift coefficient and 0.98 for drag coefficient which were close to 1.0 as expected.  相似文献   
2.
针对某民机起飞、巡航、着陆三种典型飞行状态,通过CFD方法研究翼梢小翼后掠角变化对该机不同状态下气动性能的影响。仿真结果表明,在起飞、巡航、降落三种不同状态下,随着翼稍小翼后掠角的增大,升阻比的变化都呈现先升高后下降的趋势;同时得出在以10°为步长的计算条件下,以升阻比为考核指标,对应各飞行状态的最佳后掠角分别为30°、50°、40°。该结论对今后变体翼梢小翼的研究有一定的参考价值。  相似文献   
3.
A design study of wing tip devices at high and low speeds is described. The basis of the design study is an equivalent drag approach containing both aerodynamic drag gain and structural weight penalty. A comprehensive parameter study is carried out using a rapid aerodynamic prediction tool named Lift and Drag Component Analysis (LIDCA). Adding to an available lifting-line method a databased module for airfoil data is employed that uses results of two-dimensional flow simulations by multidimensional interpolation. Detailed validation studies of the method at high lift and high speed have demonstrated good accuracy. RANS computations of the selected wing tip designs confirm the predicted benefits at cruise condition. The results of the most effective wing tip designs are analysed at both flight conditions. Finally, options for improving the performance at take-off are suggested.  相似文献   
4.
《中国航空学报》2021,34(5):1-16
The Stereo Particle Image Velocimetry (SPIV) technology is applied to measure the wingtip vortices generated by the up-down symmetrical split winglet. Then, the temporal bi-global Linear Stability Analysis (bi-global LSA) is performed on this nearly equal-strength co-rotating vortex pair, which is composed of an upper vortex (vortex-u) and a down vortex (vortex-d). The results show that the instability eigenvalue spectrum illustrated by (ωr, ωi) contains two types of branches: discrete branch and continuous branch. The discrete branch contains the primary branches of vortex-u and vortex-d, the secondary branch of vortex-d and coupled branch, of which all of the eigenvalues are located in the unstable half-plane of ωi > 0, indicating that the wingtip vortex pair is temporally unstable. By contrast, the eigenvalues of the continuous branch are concentrated on the half-plane of ωi < 0 and the perturbation modes correspond to the freestream perturbation. In the primary branches of vortex-u and vortex-d, Mode Pu and Mode Pd are the primary perturbation modes, which exhibit the structures enclosed with azimuthal wavenumber m and radial wavenumber n, respectively. Besides, the results of stability curves for vortex-u and vortex-d demonstrate that the instability growth rates of vortex-u are larger than those of vortex-d, and the perturbation energy of Mode Pu is also larger than that of Mode Pd. Moreover, the perturbation energy of Mode Pu is up to 0.02650 and accounts for 33.56% percent in the corresponding branch, thereby indicating that the instability development of wingtip vortex is dominated by Mode Pu. By further investigating the topological structures of Mode Pu and Mode Pd with streamwise wavenumbers, the most unstable perturbation mode with a large azimuthal wavenumber of m = 5–6 is identified, which imposes on the entire core region of vortex-u. This large azimuthal wavenumber perturbation mode can suggest the potential physical-based flow control strategy by manipulating it.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号