首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
航空   2篇
航天技术   3篇
  2023年   1篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
Understanding the physics of the various disturbances in the solar wind is critical to successful forecasts of space weather. The STEREO mission promises to bring us new and deeper understanding of these disturbances. As we stand on the threshold of the first results from this mission, it is appropriate to review what we know about solar wind disturbances. Because of their complementary nature we discuss both the disturbances that arise within the solar wind due to the stream structure and coronal mass ejecta and the disturbances that arise when the solar wind collides with planetary obstacles, such as magnetospheres.  相似文献   
2.
高马赫数超燃冲压发动机性能数值研究   总被引:3,自引:1,他引:2       下载免费PDF全文
周建兴  汪颖 《推进技术》2014,35(4):433-441
考虑水平起降要求,构造了一种采用流线追踪内转式进气道、圆形截面燃烧室的双侧布局高马赫数超燃冲压发动机,设计点马赫数为7。对Ma 7~10范围内的发动机性能进行了数值模拟,给出了发动机进气道性能、整机性能,对燃烧室内的燃料掺混和燃烧情况进行了分析。此外,采用一维性能计算方法对燃烧室性能进行了预估。研究表明,此发动机性能可满足飞行器推阻匹配需求;一维性能结果与三维数值模拟的压力分布处于15%的误差范围内,可用于发动机性能的快速预估。  相似文献   
3.
A turbine design method based on pressure controlled vortex design (PCVD) is presented to design a small-size turbine stage. Contrary to the conventional controlled vortex design (CVD) method, the main objective of PCVD is to control the axial velocity and radial pressure in the sta- tor rotor gap. Through controlling axial velocity, the PCVD establishes a direct tie to meridional stream surface. Thus stream surface variation is induced, resulting in a large secondary flow vortex covering the full blade passage in the respective stator and rotor. This secondary flow vortex could be dedicated to control the secondary flow mitigation and migration. Through radial pressure, the PCVD is also associated with the macroscopic driving force of fluid motion. So the better benefit of CVD can be achieved. The core concept behind PCVD is to mainly control the spanwise pressure gradient by altering profile loading at various spanwise locations. Therefore not only the local pro- file lift is affected, but also the resulting throat widths, stage reaction degree, and massflow rate are altered or redistributed respectively. With the PCVD method, the global stage efficiency is increased successfully while the mass flow rate keeps constant. Additionally there is no endwall shape optimization, stacking optimization, or pitch/chord variations, concentrating solely on varying blade profile deflections and stagger.  相似文献   
4.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   
5.
In this paper, we show the potential of satellite altimetry to study the interaction of Rossby waves with the shear flow. The Miles-Ribner approach, which was developed in gas dynamics in the 1960 s, is used to describe Rossby waves interacting with the Gulf Stream and Kuroshio areas. The region of interaction is approximated by a nonzonal vortex layer. We apply the main formulations of the problem of a nonzonal vortex layer on the β-plane in the formulation of Miles-Ribner to observations in the real ocean. Earlier, we showed that the interaction of waves with a nonzonal flow gives rise to a new class of solutions, which is absent in the case of a zonal flow. This new class of solutions can be interpreted as the pure emission of Rossby waves by the nonzonal flow. We apply this theoretical approach to the areas of the Gulf Stream and Kuroshio as well. We use for analysis altimetry data available at Copernicus Marine Environment Monitoring Service. The analysis of Hovmöller diagrams in the areas under consideration confirms the previously obtained theoretical conclusions of the problem of the interaction of planetary waves with a nonzonal flow on the β-plane in the formulation of Miles-Ribner. The incident waves, as well as refracted and reflected waves are distinguished. The speed of refracted and reflected waves exceeds the speed of incident waves, which confirms the conclusions about the existence of mechanisms for the amplification of planetary waves when they interact with a nonzonal flow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号