首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   2篇
航空   8篇
航天技术   11篇
综合类   1篇
航天   5篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
宁强陨石的岩石学、矿物学及化学组成的研究表明,宁强陨石属于异常的CV3碳质球粒陨石,稀有气体和宇宙射线暴露年龄的测定结果与岩石学及化学组成的研究结果是一致的,宁强陨石的宇宙射线暴露年龄为42.2Ma,在CV3球粒陨石中是最高的,U/Th-4He及40K-40Ar气体保存年龄分别为4170±160Ma和4260±70Ma,这与碳质球粒陨石的气体保存年龄为4200Ma是一致的.  相似文献   
2.
利用气体渗碳物质传递数学模型来仿真计算碳浓度分布,并根据计算结果在计算机上拟合出碳浓度与时间、温度、气氛碳势之间的关系式,此关系式对气体渗碳的动态控制具有指导意义。  相似文献   
3.
为了研究激光击穿气体工质的机理,通过测量冲量耦合系数,比较了激光在不同压强下击穿不同惰性单原子气体(氩气、氦气)的效果,试验结果表明:原子序数较大的无机气体原子可以电离出更多的电子,从而击穿阈值更低,激光能量转化为爆轰波能量的能量转化效率更高,冲量耦合系数就越大,同样条件下更容易击穿。推进剂气体不同,冲量耦合系数差别较大。测量摆角对结果的影响也较大。  相似文献   
4.
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreements.  相似文献   
5.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   
6.
本文建立一个数值模拟完全气体混合流动的理论模型.该模型首先应用混合气体的Euler方程和每种气体组分的质量分数方程来控制流动.为了消除混合网格内气体组分界面附近出现的非物理振荡,我们假定混合气体的每种组分达到了动力学平衡状态然而尚未达到热力学平衡状态.这种思想导致需要另外给定每种气体组分的总能量方程.为使用高分辨格式来求解这组双曲型偏微分方程并且简化对所需要的Jacobi矩阵的推导,混合气体的压力方程也被耦合起来.Godunov型的波传播方法被采用来离散求解所获得的控制方程.从典型算例结果来看,一维问题的数值解与精确解一致,二维问题的数值解与理论分析一致.这说明本文的理论模型是合理的.  相似文献   
7.
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.  相似文献   
8.
在近空间高超声速飞行器飞行时间长、马赫数不断增加的发展趋势下,热防护与轻量化的矛盾越来越突出。基于此,开展了热解气体燃烧对炭化复合材料表面烧蚀影响的相关数值模拟研究,并与风洞试验结果进行了对比。结果表明:热解气体的燃烧可降低炭化复合材料表面的烧蚀厚度,并且随着气动热的增加,热解气体燃烧对材料表面碳的保护作用越来越明显。研究成果可为下一代近空间高超声速飞行器热防护系统的优化设计提供技术支撑。  相似文献   
9.
Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System (GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2 (hereinafter, Mixed Inert Gas (MIG)), while that in the On-Board Inert Gas Generation System (OBIGGS), which is one of the most widely used fuel tank inerting technologies, is Nitrogen-Enriched Air (NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels, so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.  相似文献   
10.
高温气流换热通道中,沿气流方向插入辐射板,可利用板的热辐射增强换热。本文利用辐射与对流联合作用的非耦合模型,进行了数值计算,并在最高气温为900℃的高温风洞上进行了实验研究。理论与实验结果吻合良好。文中对入口温度、风速及板数等因素的影响作了分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号