首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   2篇
  2012年   1篇
  1984年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
To illustrate the interaction of Grand Unified Theories (GUTs), supersymmetry (SUSY), and cosmology, a worked example is carried out. This example is the dark matter problem, or “What is the dominant matter of the Universe?” It is shown that if GUTs are assumed then the primordial perturbations are probably adiabatic, if inflation is assumed then Ω = 1 and GUTs first name is probably SUSY. If Ω = 1, big bang nucleosynthesis tells us that the bulk of the matter is non-baryonic. SUSY-GUTs gives us some possible candidate inos to which massive neutrinos, axion or planetary mass black holes can be added. These candidates can be classified hot (or warm) or cold types of dark matter. It is shown that hot gives Ω = 1 and naturally gives large scale structure but does not give small scale structure or galaxy formation times, whereas cold gives small scale structure and formation times but cannot easily yield Ω = 1. It is concluded that either a hybrid of both hot and cold or non-random phases for the perturbations may be needed.  相似文献   
2.
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun’s movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events). However, at present there is no clear physical mechanism relating these phenomena. The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun’s acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun’s acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun–planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun’s capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle. This process begins about 40 years before the solar angular momentum inversions, i.e., before Maunder Minimum, Dalton Minimum, and before the present extended minimum. Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima. We discuss the possible implications of these results for the solar cycle including the present extended minimum.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号