首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   26篇
  国内免费   15篇
航空   72篇
航天技术   50篇
综合类   21篇
航天   72篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   14篇
  2013年   10篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   9篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   9篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有215条查询结果,搜索用时 156 毫秒
1.
2.
本文着重讨论半导体温差电致冷器氧化铍瓷冷板和散热板的关键特性参数及其测量装置,原理和方法,计算公式推导,影响测量精度的关键因素分析,榈制作及装配工艺要求等。最后,作样品实测举例和结论。  相似文献   
3.
简要介绍正温度系数(PTC)效应,分析PTC陶瓷的电阻-温度、电压-电流和电流-时间三大特性;论述PTC陶瓷元件的工艺过程,并给出生产的工艺过程框图。对PTC陶瓷元件的应用领域、应用前景和销售市场作了分析。  相似文献   
4.
空间能量粒子探测方法研究   总被引:1,自引:0,他引:1  
阐述了空间能量粒子探测的原理和方法。介绍了国外在能量粒子探测方面所采用的半导体望远镜测量法、电场加速法、磁偏转法等方法,分析了它们各自的优缺点。就制约能量粒子探测技术发展的关键因素进行了讨论。并以此为基础,结合我国实际情况提出了一种新的探测方法。  相似文献   
5.
分析了半导体致冷器的性能特征,介绍了发射车调温系统的结构组成和特点,并提出获取半导体致冷器最佳工作电流和调温系统最大致冷量的解决途径,同时着重讨论了几点具体的实现方法。  相似文献   
6.
电阻式传感器的核心部件——电阻应变计是目前最常用的应力分析的敏感元件。也常用于测量力、压力、扭矩和加速度等物理量。作者简要回顾了电阻应变计的发展历史,介绍了电阻应变计的结构、分类及现状,展望了电阻式传感器的前景。  相似文献   
7.
InSb磁敏电阻角位移传感器的研究   总被引:1,自引:0,他引:1  
简单分析了InSb磁敏电阻的工作原理,讨论了利用偏置磁场作用于半桥磁敏电阻构成转动速度及位移传感器的测试原理;针对半导体材料对温度十分敏感的特点,提出了利用浮动零点跟踪技术测试齿轮转速的方法,并对其优缺点进行了讨论。  相似文献   
8.
随着社会的发展和科学技术的进步,电子设备和仪器越来越趋向精密化、小型化和高性能化,而效能提升随即带来对导热散热的高需求.其中,碳化硅(SiC)由于具有良好的耐磨性、高温力学性、抗氧化性、宽带隙等特性,在半导体、核能、国防及空间技术等高科技领域具有广阔的应用前景.除此之外,SiC具有的高导热系数奠定了其在第三代半导体材料...  相似文献   
9.
本文介绍了中国南方航空动力机械公司多年来为追求市场发展需要,积极开发燃气轮机技术的情况,包括热电联供、燃料更新、扩大应用范围以及排放控制研究等。  相似文献   
10.
针对空间站中间回路温度波动过大,高温时导致科学载荷工作温度超出允许范围的问题,设计了一种基于热电制冷器(TEC)的末端单向流体回路温控系统。该系统包含一个TEC温控模块,当中间回路温度过高,末端回路冷却功率不足时,该模块可提供额外的制冷量,降低流入冷板的工质温度,形成针对科学载荷的相对低温区域,恢复回路的冷却能力。分别建立了温控系统数学模型与数值仿真模型,并完成了热负载扰动、中间回路温度扰动、末端回路流量扰动和并联支路热扰动等4种扰动对系统热力学特性影响的仿真分析,验证了TEC模块的温控性能。结果表明:在科学载荷发热功率增加30%、中间回路的温度升高5K、末端回路流量减小至0.0015kg/s等多种工况下,所设计的温控系统能够将载荷温度控制在1K以内,实现科学载荷精确温控。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号