首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   47篇
  国内免费   14篇
航空   100篇
航天技术   5篇
综合类   15篇
航天   9篇
  2023年   6篇
  2022年   11篇
  2021年   10篇
  2020年   7篇
  2019年   1篇
  2018年   11篇
  2017年   10篇
  2016年   17篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2000年   4篇
  1999年   6篇
  1997年   2篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
新书推荐     
《航空港》2015,(3):90
<正>狼图腾姜戎著长江文艺出版社本书由几十个有机连贯的"狼故事"一气呵成,情节紧张激烈而又新奇神秘。读者可从书中每一篇章、每个细节中攫取强烈的阅读快感,令人欲罢不能。那些精灵一般的蒙古草原狼随时从书中呼啸而出:狼的每一次侦察、布阵、伏击、奇袭的高超战术;狼对气象、地形的巧妙利用;狼的视死如归和不屈不挠;狼族中的友爱亲情;狼与草原万物的关系;倔强可  相似文献   
2.
为了更好地认识针栓式喷注器雾化场的结构,基于网格自适应加密技术以及VOF (volume of fraction)方法追踪气液的分界面,采用realizable k-ε湍流模型模拟整个流动过程,还原了不同时刻气/液撞击的初次破碎过程,数值模拟结果与高速摄影试验结果定性定量对比均吻合较好,验证了数值方法的准确性。进一步对针栓式喷注器气/液撞击的初次破碎过程、内部流场涡结构、速度场进行分析,研究了初次破碎雾化的动力学过程和机理。研究结果表明:液桥的形成主要是由液洞的扩展和拉伸、合并而形成,而液滴主要是由中心液膜拉伸、液丝断裂以及液桥断裂而形成,液膜破碎阶段形成的涡结构是造成液膜断裂的主要原因。  相似文献   
3.
凝胶推进剂的双股射流撞击雾化广泛应用于液体火箭发动机的燃烧室中,其破碎特征及雾化效果直接影响燃烧效率。为探究雾化特性的发展规律,采用直接数值模拟DNS方法,对射流速度为100m/s的剪切稀化非牛顿液体正交撞击产生的雾化特征、液体表面积、表面波、涡特性以及非牛顿特性开展研究。结果表明,射流下形成的雾化流场迅速扩张形成液膜,液膜两侧边缘破碎成大量的液丝与液滴,核心部分产生撞击波后在气体力的作用下逐步发展为带有凸起和褶皱的不稳定表面波,其撞击波波长最大可达2.46倍射流直径。液体表面积不断增长,但无量纲表面积总体呈现先下降再上升的趋势。气体中的涡量分布则分为有序附着区和无序爆炸区两类,并且涡量主要集中分布于气相区域。此外,射流撞击时产生强剪切使该液体内部的粘性系数下降,最低仅为初始粘性系数的0.3倍。  相似文献   
4.
平板式预膜喷嘴初次雾化特性试验   总被引:2,自引:1,他引:1  
为深入了解平板式预膜喷嘴初次雾化特性,试验研究不同进口条件对平板式预膜喷嘴初次雾化特性的影响规律。试验采用了背光照明和片状激光照明相结合的高频拍摄手段分别获得液膜俯视和侧视破碎形态,同时运用本征正交分解(POD)法和液膜边缘定位等分析方法进行光学图像结果后处理,获得表征平板式预膜喷嘴初次雾化特性三个物理量:液膜波动频率、破碎距离和横向不稳定波长。试验结果表明:①通过分析侧视和俯视破碎形态,平板式预膜喷嘴液膜破碎形态可分为三类:末端破碎、波浪脱落和表面剥离,进口韦伯数对预膜喷嘴破碎形态的影响占主导地位;②把POD法和液膜边缘定位方法等相结合方法应用到高频非接触光学喷嘴雾化图像的后处理分析中,是一种非常有效的数据后处理方法;③液膜初次雾化特性主要受到进口韦伯数和气液动量比的影响,破碎距离和横向不稳定波长都随进口韦伯数的增加而降低,液膜表面不稳定波动频率随进口韦伯数的增加而增加,所获得的经验关系式与试验数据吻合较好。所获得的进口参数对液膜破碎形态和雾化特性的影响规律为喷嘴后续优化设计提供了依据。  相似文献   
5.
不同工艺粉末对超音速火焰喷涂WC-10Co-4Cr涂层性能的影响   总被引:1,自引:0,他引:1  
对比分析了采用烧结破碎和团聚烧结工艺制备的两种WC-10Co-4Cr粉末的物理性能和物相组成。采用超音速火焰喷涂技术对两种粉末进行了涂层制备,并对两种涂层的性能进行对比评价,结果表明:团聚烧结粉末制备涂层的硬度、孔隙率和抗冲蚀磨损性能均优于烧结破碎粉末制备涂层,但其结合强度略低于烧结破碎粉末制备涂层。  相似文献   
6.
涡轮间隙泄漏涡破碎对损失的影响   总被引:4,自引:0,他引:4  
高杰  郑群  许天帮  张正一 《航空学报》2014,35(5):1257-1264
采用数值方法联合标准k-ω两方程湍流模型求解雷诺平均Navier-Stokes方程组,研究了不同间隙高度下GE-E3(Energy Efficient Engine)涡轮第一级动叶顶部间隙泄漏涡(TLV)的破碎特性及其对泄漏损失的影响。首先描述了泄漏涡的破碎现象,并对其动力学特性进行了理论分析,接着研究了间隙高度对泄漏涡结构及破碎特性的影响,最后对泄漏涡破碎与损失的关系进行了探讨。研究结果表明:涡轮叶顶间隙泄漏涡具有不稳定特性,当泄漏涡具有足够的强度可以克服通道涡卷吸形成完整涡结构时,在叶片后半部分逆压区发生了涡破碎现象,带来了额外的涡破碎损失;间隙高度对泄漏涡破碎位置的影响比较明显,在大间隙下泄漏涡趋于相对稳定;叶顶泄漏流产生的掺混损失以泄漏涡的破碎为标志分为两个阶段,大量的掺混损失发生在泄漏涡破碎之后,这也是叶顶泄漏流产生损失的主要部分。  相似文献   
7.
方昕昕  沈赤兵  康忠涛 《推进技术》2016,37(10):1893-1899
为了研究针栓式喷注器无旋锥形液膜表面波不稳定特性,采用高速摄影获得了不同压降下表面波波动图像,测量了液膜表面波破碎点波长、振幅以及破碎长度等特征信息。利用试验结果修正了无旋锥形液膜色散方程中的参数C和ln(η_bη_0),并求解了色散方程。研究了喷注压降对液膜破碎长度、破碎时间以及破碎点波长的影响。结果表明:随着喷注压降的增加,液膜破碎长度和破碎时间均降低,并且降低趋势越来越缓,液膜表面波发展的非线性增强,理论值与试验值的偏差由3.9%增大到29.2%;液膜破碎位置处扰动波长随喷注压降的增加而降低,并且试验值比理论值偏大50%左右,无旋锥形液膜破碎模型可定性分析针栓式喷注器液膜表面波不稳定性。  相似文献   
8.
金仁瀚  刘勇  王锁芳 《推进技术》2016,37(10):1928-1937
为了获得热气流中单液滴剪切破碎特性,采用高速摄像机对液滴变形、破碎过程进行了捕获。结果表明:液滴初始直径减小、气流温度增加,降低了液滴发生剪切破碎所需最小气动力;液滴破碎特征时间,随气动力增加呈线性递减变化趋势,且其值与变化梯度都随液滴初始直径增加而增大;液滴破碎区域面积、子液滴质量百分数随气动力增加呈先增加后减小的变化趋势,液滴初始直径增加,液滴破碎区域面积随之增加,而子液滴质量百分数则随之减小;剪切破碎锥角,随气动力增加呈线性减小的变化趋势;液滴破碎程度随液滴初始直径增加有明显改善;标准离差率数学模型可以用于子液滴群空间分布均匀性方面的研究。  相似文献   
9.
刘祺  夏津  黄忠  钱勇  具德浩 《推进技术》2021,42(2):362-371
为探究航空发动机离心式喷嘴的喷雾宏观特性,通过将该喷嘴在高温高压定容弹中进行喷雾过程的实验,并结合阴影法与纹影法进行光学测量.首先以水作为射流工质,观察不同喷射压力下水进入大气环境中的雾化角变化,发现喷嘴结构对雾化角有着重要影响,最大雾化角与喷嘴出口的导流结构夹角相等.其次以正癸烷作为工质,通过不同环境压力和温度下的多...  相似文献   
10.
王雷  方斌  王光彩 《推进技术》2021,42(8):1855-1864
为实现离心式喷嘴雾化过程的精确数值仿真,探究喷嘴内部流动特性与外部液膜破碎形式,采用基于大涡模拟的仿真方法,对一种典型的四进口离心式喷嘴进行研究,仿真结果揭示了喷嘴内部相界面的振荡现象与外部液膜的破碎细节,并通过耦合流体体积法(VOF)与离散相模型(DPM),获得液滴粒径的空间分布特征。研究结果表明:在液体填充过程中,喷嘴内的气液相界面存在波动与褶皱,形状并不稳定,内部的空气芯直径呈现正弦模式的振荡变化,喷嘴出口液膜厚度沿周向分布不均,这些因素导致出口附近的液膜表面出现扰动。在不同的进口条件下,不稳定性导致液膜表面上的扰动波形式不同。进口压力为0.3MPa时,液膜破碎由开尔文-亥姆霍兹(K-H)不稳定性产生的轴向正弦波所导致,产生沿周向分布的环形液带;在0.7MPa下,液膜表面开始出现由瑞利-泰勒(R-T)不稳定性引发的周向扰动波;随着压力增加至1.1MPa,液膜的破碎则由R-T不稳定性主导,产生沿轴向分布的液带结构,随后在气动力与表面张力的作用下破碎成液滴。二次雾化破碎后,喷嘴外部截面内的粒径呈“单谷”分布,液滴平均粒径计算结果与实验的最大相对误差为5.1%,与实验数据吻合度较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号