首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   13篇
航天技术   2篇
航天   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2009年   2篇
  2005年   5篇
  2003年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 128 毫秒
1.
Pollock  C.J.  C:son-Brandt  P.  Burch  J.L.  Henderson  M.G.  Jahn  J.-M.  McComas  D.J.  Mende  S.B.  Mitchell  D.G.  Reeves  G.D.  Scime  E.E.  Skoug  R.M.  Thomsen  M.  Valek  P. 《Space Science Reviews》2003,109(1-4):155-182
Energetic Neutral Atom (ENA) imaging has contributed substantially to substorm research. This technique has allowed significant advances in areas such as observation and quantification of injected particle drift as a function of energy, observation of dynamics in the tail that are directly related to the effects of imposed (growth phase) and induced (expansion phase) electric fields on the plasma, the prompt extraction of oxygen from the ionosphere during substorms, the relationship between storms and substorms, and the timing of substorm ENA signatures. We present discussion of the advantages and shortcomings of the ENA technique for studying space plasmas. Although the technique is in its infancy, it is yielding results that enrich our understanding of the substorm process and its effects.  相似文献   
2.
3.
4.
5.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   
6.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   
7.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   
8.
9.
10.
Solar wind driving can cause a variety of different responses in the magnetosphere. Strong and steady driving during geomagnetic storms may result in sawtooth events. Strong to moderate driving may be followed by either sawtooth events or steady magnetospheric convection (SMC) events. Lower solar wind energy input typically leads to the formation of isolated non-storm substorms. This study uses superposed epoch analysis to reveal the typical properties of these three event groups as well as their similarities and differences. We use IMF and solar wind parameters, as well as ground-based indices (AL, SYM-H, ASY-H, PCN) to examine the level of solar wind driving and its response in the magnetosphere. Our results show that sawtooth events are associated with the strongest ionospheric activity. The subgroups of events during constant solar wind EYEY show that the key difference between the events is the average solar wind speed. Particularly, the high activity during sawtooth events is driven by high solar wind speed, while the lowest average speed during the SMCs may explain the lack of substorm activity during the steady convection periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号