首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航天   7篇
  2022年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged.  相似文献   
2.
3.
The algorithms for achieving a practical increase in the rate of data transmission on the space-craft–ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.  相似文献   
4.
The efficiency of using the light pressure of solar radiation for increasing the semimajor axis of the orbit of an Earth Satellite carrying a solar sail is estimated. The orbit is nearly circular and has an altitude of about 900 km. The satellite is in the mode of single-axis solar orientation: it rotates at an angular velocity of 1 deg/s around the axis of symmetry, which traces the direction to the Sun. This mode is maintained by the solar sail, which serves in this case as a solar stabilizer. The following method of increasing the semimajor axis of the orbit (which is equivalent to increasing the total energy of the satellite's orbital motion) is considered. On those sections of the orbit, where the angle between the light pressure force acting upon the sail and the vector of geocentric velocity of the satellite does not exceed a specified limit, the sail is functioning as a solar stabilizer. On those sections of the orbit, where the above-indicated angle exceeds this limit, the sail is furled by way of turning the edges of the petals towards the Sun. Such a control increases the semimajor axis by more than 150 km for three months of flight. In this case, the accuracy of solar orientation decreases insignificantly.  相似文献   
5.
The paper deals with a choice of the rational trajectory of motion of a landing module designed for the Moon landing, from the moment of its de-orbiting from the near-lunar orbit up to landing. An integrated conceptual basis is used to develop multistep terminal algorithms for guidance for the three segments of the descent.  相似文献   
6.
7.
Cosmic Research - The problem of safe landing of a spacecraft with a combined propulsion system from a circumlunar orbit to a given place on the lunar surface is considered. Landing safety is...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号