首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航天   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   
2.
3.
The concept that life emerged where alkaline hydrogen-bearing submarine hot springs exhaled into the most ancient acidulous ocean was used as a working hypothesis to investigate the nature of precipitate membranes. Alkaline solutions at 25-70°C and pH between 8 and 12, bearing HS(-)±silicate, were injected slowly into visi-jars containing ferrous chloride to partially simulate the early ocean on this or any other wet and icy, geologically active rocky world. Dependent on pH and sulfide content, fine tubular chimneys and geodal bubbles were generated with semipermeable walls 4-100?μm thick that comprised radial platelets of nanometric mackinawite [FeS]±ferrous hydroxide [~Fe(OH)(2)], accompanied by silica and, at the higher temperature, greigite [Fe(3)S(4)]. Within the chimney walls, these platelets define a myriad of micropores. The interior walls of the chimneys host iron sulfide framboids, while, in cases where the alkaline solution has a pH>11 or relatively low sulfide content, their exteriors exhibit radial flanges with a spacing of ~4?μm that comprise microdendrites of ferrous hydroxide. We speculate that this pattern results from outward and inward radial flow through the chimney walls. The outer Fe(OH)(2) flanges perhaps precipitate where the highly alkaline flow meets the ambient ferrous iron-bearing fluid, while the intervening troughs signal where the acidulous iron-bearing solutions could gain access to the sulfidic and alkaline interior of the chimneys, thereby leading to the precipitation of the framboids. Addition of soluble pentameric peptides enhances membrane durability and accentuates the crenulations on the chimney exteriors. These dynamic patterns may have implications for acid-base catalysis and the natural proton motive force acting through the matrix of the porous inorganic membrane. Thus, within such membranes, steep redox and pH gradients would bear across the nanometric platelets and separate the two counter-flowing solutions, a condition that may have led to the onset of an autotrophic metabolism through the reduction of carbon dioxide.  相似文献   
4.
Liu DL  Beegle LW  Kanik I 《Astrobiology》2008,8(2):229-241
The capability of detecting biomarkers, such as amino acids, in chemically complex field samples is essential to establishing the knowledge required to search for chemical signatures of life in future planetary explorations. However, due to the complexities of in situ investigations, it is important to establish a new analytical scheme that utilizes a minimal amount of sample preparation. This paper reports the feasibility of a novel and sensitive technique, which has been established to quantitate amino acids in terrestrial crust samples directly without derivatization using volatile ion-pairing liquid chromatography and tandem mass spectrometry equipped with an electrospray ionization source. Adequate separation of 20 underivatized amino acids was achieved on a C(18) capillary column within 26 min with nonafluoropentanoic acid (NFPA) as ion-pairing reagent. Each amino acid was identified from its retention time as well as from its characteristic parent-to-daughter ion transition. Using tandem mass spectrometry as a detection technique allows co-elution of some amino acids, as it is more specific than traditional spectrophotometric methods. In the present study, terrestrial samples collected from 3 different locations were analyzed for their water-extractable free amino acid contents, following the removal of metal and organic interferences via ion exchange procedures. This is the first time that amino acids in geological samples were directly determined quantitatively without complicated derivatization steps. Depending on the amino acid, the detection limits varied from 0.02 to 5.7 pmol with the use of a 1 microl sample injection loop.  相似文献   
5.
A principal goal of astrobiology is to detect and inventory the population of organic compounds on extraterrestrial bodies. Targets of specific interest include the wealth of icy worlds that populate our Solar System. One potential technique for in situ detection of organics trapped in water ice matrices involves ultraviolet-stimulated emission from these compounds. Here, we report a preliminary investigation into the feasibility of this concept. Specifically, fluorescence and phosphorescence of pure benzene ice and 1% mixtures of benzene, toluene, p-xylene, m-xylene, and o-xylene in water ice, respectively, were studied at temperatures ranging from ~17 K up to 160 K. Spectra were measured from 200-500 nm (50,000-20,000 cm(-1)) while ice mixtures were excited at 248.6 nm. The temperature dependence of the fluorescence and phosphorescence intensities was found to be independent of the thermal history and phase of the ice matrix in all cases examined. All phosphorescent emissions were found to decrease in intensity with increasing temperature. Similar behavior was observed for fluorescence in pure benzene, while the observed fluorescence intensity in water ices was independent of temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号