首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航天   8篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  1999年   1篇
  1985年   2篇
  1981年   1篇
排序方式: 共有8条查询结果,搜索用时 8 毫秒
1
1.
A major problem with operations of lifting reentry vehicle having an aft center-of-gravity location due to large engine mass at the rear is the required hypersonic trim to fight the desired trajectory. This condition is most severe for lifting maneuvers. As a first step toward analyzing this problem, this paper considers the lift requirement for some basic maneuvers in the plane of a great circle. Considerations are given to optimal lift control for achieving the maximization of either the final altitude, speed or range. For the maximum-range problem, phugoid oscillation along an optimal trajectory is less severe as compared to a glide with maximum lift-to-drag ratio. An explicit formula for the number of oscillations for an entry from orbital speed is proposed.  相似文献   
2.
With increasing frequency in shuttle operation, it is of interest to have more than one or two landing fields within the boundary of the reachable area of the reentry vehicle. This boundary, called the footprint, depends on the aerodynamic characteristics of the vehicle and is severely restricted by the deceleration and heating constraints imposed upon the atmospheric reentry trajectory. This paper gives a general assessment of the footprint as a function of various deceleration and heating constraints. The difficulties in the computation of the three-dimensional reentry trajectories with optimal modulation in both the angle-of-attack and the bank angle are alleviated by the following devices: (a) nondimensionalizing of the equations of motion and use of the density as the altitude variable; (b) use of the classical integrals of the motion; (c) transformation of the adjoint variables into physical variables; and (d) spherical rotation of the coordinates.  相似文献   
3.
The suborbital flight is a kind of flight, which reaches the space and then comes back to ground without completing one orbital revolution. The atmospheric thermosphere extends from 85 km to 600 km in altitude. Therefore, the suborbital and low-thermospheric experiments to be performed at altitude below 300 km can be combined using the sounding rocket. These experiments include rocket staging, fairing separation, ultrasonic flight, reentry, aerobrake and recovery test, ultraviolet and ionization observations, ozone measurement, etc. The advent of Taiwan's sub-orbital and thermospheric experiments project can be traced back to 1997. This is the year Taiwan's National Space Organization (NSPO) was assigned to be responsible for procuring the sounding rocket for applications in science experiments and space technology research effort. From 1997 to 2010, 8 launches have been completed including one experimental hybrid rocket. All onboard instruments and sensors for sub-orbital and low-thermospheric experiments are developed and integrated by the domestic universities. More launches have been planned in the future. Opportunities for international cooperation in developing new instruments and payloads for future experiments will be possible.  相似文献   
4.
The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.  相似文献   
5.
FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.  相似文献   
6.
The purpose of this study is to investigate the optimal thrust program for deviating an asteroid when it is flying directly toward or crossing the Earth. Under some assumptions, the problem can be considered as a two-body problem of Earth-asteroid system. The initial relative speed and distance are specified to be 10 km/s and 150 times of Earth's radius, respectively. We have about 1 day (or, 93681 seconds exactly) to take action. If a single impulse is applied to the asteroid at the specified initial point, the required impulse to obtain a miss distance of 2 times of Earth's radius is 169.5 m/s per kg mass. For an asteroid of 10 m in diameter, the total impulse required is 3.02 × 108 m/s. It needs a typical large launching rocket to provide the total impulse. When the asteroid is larger or the initial distance is shorter, the number of launching rockets required increases rapidly. For further analysis with physical and engineering constraints imposed, we shall have to use the variational formulation method.  相似文献   
7.
This paper presents the orbital maneuver (OM) and keeping of FORMOSAT-2 (or FS2, Formosa Satellite #2) since its launch on 20 May 2004. The successful launch put FS2 in a sun-synchronous parking orbit with 729.94 km perigee and 743.31 apogee. Taiwan’s National Space Organization (NSPO) then spent 11 days to perform the first orbital maneuver (OM#1) and raised FS2 to its sun-synchronous circular mission orbit at 888.47 km altitude. Due to various kinds of disturbances, FS2’s orbit shifts gradually but constantly. Therefore, four times of OM had been performed for orbital keeping. Details of all 5 OMs are described.  相似文献   
8.
This paper presents the enhancement in mission operations, the mission life state-of-health (SOH) trending analysis, and the post mission life plan of the FORMOSAT-2 (or FS2, Formosa satellite #2, was called ROCSAT-2, or RS2, Republic of China satellite #2, previously) during its five years mission life from 20 May 2004 to 20 May 2009. There are two payloads onboard FS2: a remote sensing instrument (RSI) with nadir ground sampling distance (GSD) of 2 m for panchromatic (PAN) and GSD of 8 m for multi-spectral (MS, 4 bands) as the primary payload, and an imager for sprite and upper atmospheric lightning (ISUAL) as the secondary payload. It was launched on 20 May 2004. The design life is 7 years while the mission life is 5 years. In other words, the end of mission life date of FS2 is 20 May 2009. Generally speaking, FS2 is still at very good condition in its SOH. Post mission life plan for FS2 consists of: the practice of orbit transfer for global coverage and better resolution, the development of gyroless attitude control, and the method for life extension. It is expected that the working life of FS2 can be extended 3–5 years.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号