首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
航天   6篇
  2023年   1篇
  2013年   1篇
  2011年   2篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
为评估在轨和地面环境间由于重力差异导致的航天器设备安装精度的变化量,对27颗已发射运行的小卫星在地面环境空载和满载状态下设备安装精度的变化量进行了统计分析,得到对数正态分布模型的线性回归关系和参数估计值。结果表明:用该模型预测的航天器设备安装精度在空载和满载状态下的变化量均值与实测值的相对误差不超过10.6%,说明对数正态分布模型可较好地表征航天器设备安装精度在空载和满载状态下的变化量分布。以上研究可为在轨设备安装控制提供参考。  相似文献   
2.
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究.结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推...  相似文献   
3.
含Cs盐的HTPB/AP/Al复合推进剂特性研究   总被引:1,自引:0,他引:1  
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究。结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推进剂的能量随Cs盐质量分数的增加稍有减小,推进剂密度从1.766 g/cm3提高到1.851 g/cm3;相对于AP,Cs盐和含Cs盐复合推进剂的感度均较低,当Cs盐含量为6%时,复合推进剂的机械感度最低,说明Cs盐在复合推进剂中应用是安全可行的;复合推进剂的燃速随Cs盐质量分数的增加而增大,当Cs盐含量为6%时,复合推进剂的压力指数降低幅度最大。  相似文献   
4.
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程.研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217 ℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7 ℃之间出现的主要放热峰,主放热峰之后300 ℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应.采用3种不同计算方法所得的DNP分解活化能为103~124 kJ*mol-1;最后经过分析计算得到了DNP热分解机理函数.  相似文献   
5.
N,N'-二硝基哌嗪的热分解机理及动力学研究   总被引:1,自引:0,他引:1  
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程。研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7℃之间出现的主要放热峰,主放热峰之后300℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应。采用3种不同计算方法所得的DNP分解活化能为103~124 kJ.mol-1;最后经过分析计算得到了DNP热分解机理函数。  相似文献   
6.
采用差示扫描量热法(DSC)和表观活化能变化率,研究了高能硼氢燃烧剂(十氢十硼酸双四乙基铵,BHN)与缩水甘油叠氮聚醚(GAP)、黑索今(RDX)、奥克托金(HMX)、3-硝基-1,2,4-3-己基铅(NTO-Pb)、六硝基六氮杂异伍兹烷(CL-20)、铝粉(Al,12.18μm)、镁粉(Mg,200~325目)、3,4-二硝基呋咱基氧化呋咱(DNTF)和N-脒基脲二硝酰胺盐(GUDN)等含能组分的相容性;同时,还研究了BHN与聚对苯二甲酸乙二醇酯(PET,M=6 000)、聚乙二醇(PEG,M=10 000)、二异氰酸酯(N-100)、端羟基聚丁二烯(HTPB)、己二酸铜(AD-Cu)、2,4-二羟基苯甲酸铜(β-Cu)、邻苯二甲酸铅(φ-Pb)、炭黑(CB)、三氧化二铝(A12O3)、l,3-二甲基-1,3-二苯基脲(C2)、癸二酸二异辛酯(DOS)和高氯酸钾(KP)等惰性材料的相容性。研究结果表明,BHN与NTO-Pb、CL-20、A1、Mg、PET、PEG、N-100、HTPB、CB、Al2O3、C2、DOS和KP相容性较好,与GAP和HMX轻微敏感;AD-Cu、β-Cu和φ-Pb敏感,而与RDX、DNTF和GUDN不相容。由此可见,BHN与固体推进剂的主要组分相容性良好,可在HTPB/AP/Al体系的复合固体推进剂中应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号