首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
航空   2篇
航天技术   2篇
综合类   1篇
  2023年   1篇
  2019年   1篇
  2014年   1篇
  2008年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
DATAPROCESSINGONLINEARIZATIONOFHOT-WIREANEMOMETER¥LiSufen(DepartmentofPowerEngineering,NUAA29YudaoStreet,Nanjing210016,P.R.Ch...  相似文献   
2.
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.  相似文献   
3.
针对航天器的使用要求,研制了密度≤30 kg/m~3轻质高效的二氧化硅气凝胶复合材料。针对深空探测的应用环境,对低密度气凝胶复合材料在不同条件下的热导率、热循环、热真空和电离总剂量等环境试验进行测试。结果表明,低密度气凝胶复合材料服役温度可达到-145~85℃,在1 kPa CO_2气氛下热导率可达到6.6 mW/(m·K)。获得了不同气氛和不同温度条件下以及同种气氛、不同压力条件下低密度气凝胶复合材料的热导率变化规律,并测试批次性材料热导率,结果表明批次热导率稳定性良好。热循环、热真空和电离辐照试验前后热导率和尺寸收缩率均未变化,表明低密度气凝胶复合材料在深空环境下保持良好的结构和稳定的隔热性能。  相似文献   
4.
气凝胶材料具有纳米颗粒组成的骨架结构,形成独特的纳米尺度孔洞,密度和热导率极低,可以节省航天器空间和质量资源,是空间探测领域极端低温和高温温度环境(-230~1 800℃)下优选的隔热保温材料。本文详细综述了气凝胶材料在国内外航天器中装置隔热、空间电源保温、低温储箱保温以及星际宇航服等领域应用进展,并对气凝胶在空间探测中的未来发展进行了展望。  相似文献   
5.
It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10−4 m s−1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号