首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航天技术   4篇
  2013年   1篇
  2012年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions.  相似文献   
2.
This paper proposes a strategy to search fragments from breakups in the Geosynchronous Earth Orbit (GEO) region based upon population prediction and motion prediction by means of ground-based optical observations. Breakup fragments have uncertainties in the states such as their position and motion, or even in their existence. Population prediction and motion prediction resolve those uncertainties. Population prediction evaluates the time-averaged distribution of fragments, whose position at a given time is unknown, in the celestial sphere. Motion prediction evaluates the expected motion of fragments appeared in image series acquired by a telescope’s CCD camera. This paper logically describes procedures of the search strategy, and provides mathematical expressions of population prediction and motion prediction. This paper also validates the search strategy via actual observations, in which a confirmed breakup in the GEO region is selected as a target. It is concluded that the proposed strategy is valid even for searching uncataloged fragments from breakups in the GEO region.  相似文献   
3.
This paper proposes a comprehensive approach to associate origins of space objects newly discovered during optical surveys in the geostationary region with spacecraft breakup events. A recent study has shown that twelve breakup events would be occurred in the geostationary region. The proposed approach utilizes orbital debris modeling techniques to effectively conduct prediction, detection, and classification of breakup fragments. Two techniques are applied to get probable results for origin identifications. First, we select an observation point where a high detection rate for one breakup event among others can be expected. Second, we associate detected tracklets, which denotes the signals associated with a physical object, with the prediction results according to their angular velocities. The second technique investigates which breakup event a tracklet would belong to, and its probability by using the k-nearest neighbor (k-NN) algorithm.  相似文献   
4.
In higher plants, gravity is a major environmental cue that governs growth orientation, a phenomenon termed gravitropism. It has been suggested that gravity also affects other aspects of morphogenesis, such as circumnutation and winding movements. Previously, we showed that these aspects of plant growth morphology require amyloplast sedimentation inside gravisensing endodermal cells. However, the molecular mechanism of the graviresponse and its relationship to circumnutation and winding remains obscure. Here, we have characterized a novel shoot gravitropic mutant of morning glory, weeping2 (we2). In the we2 mutant, the gravitropic response of the stem was absent, and hypocotyls exhibited a severely reduced gravitropic response, whereas roots showed normal gravitropism. In agreement with our previous studies, we found that we2 mutant has defects in shoot circumnutation and winding. Histological analysis showed that we2 mutant forms abnormal endodermal cells. We identified a mutation in the morning glory homolog of SHORT-ROOT (PnSHR1) that was genetically linked to the agravitropic phenotype of we2 mutant, and which may underlie the abnormal differentiation of endodermal cells in this plant. These results suggest that the phenotype of we2 mutant is due to a mutation of PnSHR1, and that PnSHR1 regulates gravimorphogenesis, including circumnutation and winding movements, in morning glory.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号