首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   2篇
航天技术   5篇
航天   1篇
  2021年   1篇
  2019年   1篇
  2012年   1篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
  1984年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
A good model of solar-radiation pressure induced thrust is one of the key points in sailcraft trajectory design. The sail membrane’s local topographic deformations, i.e. wrinkles and creases, are among the main aspects that such a model should include. We have analyzed the influence of wrinkles/creases, as a whole, by measuring the related deformations on small samples of sail membrane, 2.5?μm thick, consisting of CP1 and physical-vapor-deposition Aluminum. Experimental outcomes from our laboratory facility have been processed, statistically investigated, and inserted into the lightness vector formalism. We have used such formalism for accurate sailcraft trajectory computation via a non-ideal reflection sail thrust model. Finally, we computed the deviations of wrinkled-sail sailcraft final orbital states with respect to the no-wrinkle sail final orbital ones for a circular to circular 2D inward transfer. The radii of the orbits are 1?AU and the semi-major axis of Mercury, respectively. It appears that sail wrinkles and creases are no longer negligible in the sailcraft trajectory design.  相似文献   
3.
4.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   
5.
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk.  相似文献   
6.
7.
We introduce five post-Newtonian tracking formulae that would allow increasing the accuracy of the shooting systems on board autonomous LEO laser trackers. These formulae should be used when the current formulae cannot provide instants close enough to the optimal instants at which the trackers could safely shoot down unwished LEO middle-distant targets. In fact, they allow the trackers to produce not only the safest shooting actions, but also the most efficient ablations that might make the targets fall into the atmosphere for them to burn. The fact of the matter is in the falsifiability procedure introduced below, which allows to simulate sequences of unharming shooting actions with very narrow laser beams leading to identify the optimal pointing directions to previously selected debris objects whose size and composition are representative of these targets.  相似文献   
8.
We will summarize in this paper the effects that the presence of the magnetic field can cause to proto-stellar jet dynamics, structure and emission line properties, and the differences between two- and three-dimensional numerical simulations will be emphasized. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号