首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
航空   22篇
航天技术   16篇
航天   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Owen  T.  Encrenaz  T. 《Space Science Reviews》2003,106(1-4):121-138
This paper reviews our present knowledge about elemental and isotopic ratios in the Giant Planets and Titan. These parameters can provide key information about the formation and evolution of these objects. Element abundances, especially after the results of the Galileo Probe Mass Spectrometer in Jupiter, strongly support the formation model invoking an initial core formation (Mizuno, 1980; Pollack et al., 1996). They also suggest that solar composition icy planetesimals (SCIPs) brought the heavy elements to Jupiter. The Jupiter value of D/H appears to be representative of the protosolar value, while the D/H enrichment observed on Uranus and Neptune is consistent with the formation scenario of these planets. The 15N/14N measurement in Jupiter seems to be representative of its protosolar value. Future measurements are expected to come from the Cassini and Herschel space mission, as well as the ALMA submillimeter observatory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Conclusion For wavelengths < 50m fast and sensitive detectors are available. For wavelengths > 50m the available detectors are far from ideal. Research and development of far infrared detectors for the mixing purpose are highly recommended.  相似文献   
3.
Most of our knowledge regarding planetary atmospheric composition and structure has been achieved by remote sensing spectroscopy. Planetary spectra strongly differ from one planet to another. CO2 signatures dominate on Mars, and even more on Venus (where the thermal component is detectable down to 1 μm on the dark side). Spectroscopic monitoring of Venus, Earth and Mars allows us to map temperature fields, wind fields, clouds, aerosols, surface mineralogy (in the case of the Earth and Mars), and to study the planets’ seasonal cycles. Spectra of giant planets are dominated by H2, CH4 and other hydrocarbons, NH3, PH3 and traces of other minor compounds like CO, H2O and CO2. Measurements of the atmospheric composition of giant planets have been used to constrain their formation scenario.  相似文献   
4.
Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).  相似文献   
5.
SSM (Solar Sail Materials) is an on-going project for the European Space Agency (ESA) relying on past and recent European solar sail design projects. It aims at developing and testing future technologies suitable for large, operational solar sailcrafts.  相似文献   
6.
7.
Infrared spectroscopic observations of planets and Saturn's satellite Titan with the Infrared Space Observatory led to many significant discoveries that improved our understanding on the formation, physics and chemistry of these objects. The prime results achieved by ISO are: (1) a new and consistent determination of the D/H ratios on the giant planets and Titan; (2) the first precise measurement of the 15N/14N ratio in Jupiter, a valuable indicator of the protosolar nitrogen isotopic ratio; (3) the first detection of an external oxygen flux for all giant planets and Titan; (4) the first detection of some stratospheric hydrocarbons (CH3, C2H4, CH3C2H, C4H2, C6H6); (5) the first detection of tropospheric water in Saturn; (6) the tentative detection of carbonate minerals on Mars; (7) the first thermal lightcurve of Pluto. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   
8.
The IKS infrared spectro-photometer will fly on board the VEGA platforms. It is designed to characterize the size, temperature and emissivity of the Comet Halley nucleus, to identify the major gaseous components of the inner coma and to detect the emission of the cometary grains. This paper presents the “calibration” experiments required to reduce the raw data: (i) absolute wavelength calibration of the filter wheels; (ii) modeling of the internal signal, as a function of the temperature of the different sub-systems; (iii) absolute and spectral responsivities of each of the spectrometric and photometric channels, as a function of the wavelength and position of the source in the field of view. Finally, we shall indicate the expected S/N ratios.  相似文献   
9.
A development programme, sponsored by ESA and carried out in several European laboratories, on submillimetre heterodyne components and instrumentation for applications in space is nearing completion and will be discussed. A study to identify critical areas of a space heterodyne receiver, operating between 300 and 500 GHz, has been completed. A demonstration model for this frequency range is now under construction.  相似文献   
10.
In order to prepare infrared sounding of comet Halley from the flyby VEGA probes, we have computed the synthetic spectrum between 2.5 and 15 μ of a typical comet at a heliocentric distance of ~ 0.8 AU. The present paper is particularly devoted to the contribution from the cometary gases. For a selection of 20 possible parent molecules, the most efficient excitation process is resonant fluorescence by the solar radiation field. The H2O, CO, CO2, CH4, NH3 and H2CO molecules are the best candidates for detection by the IKS infrared spectrometers aboard the VEGA probes. For the water molecule, collisions are too rare to ensure thermal equilibrium in the whole coma ; therefore a limited number of fluorescence lines are expected to be present in the H2O vibrational bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号