全文获取类型
收费全文 | 211篇 |
免费 | 3篇 |
国内免费 | 1篇 |
专业分类
航空 | 81篇 |
航天技术 | 39篇 |
综合类 | 2篇 |
航天 | 93篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2015年 | 1篇 |
2014年 | 9篇 |
2013年 | 9篇 |
2012年 | 10篇 |
2011年 | 15篇 |
2010年 | 10篇 |
2009年 | 17篇 |
2008年 | 6篇 |
2007年 | 12篇 |
2006年 | 11篇 |
2005年 | 8篇 |
2004年 | 10篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 9篇 |
1998年 | 5篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 6篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
Dietrich Mü ller 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(12):31-43
Measurements of the composition of the cosmic rays at high energies, and of the energy spectra of the individual components provide the basis for the understanding of the sources, of the acceleration mechanism, and of the galactic containment of these particles. We briefly review the presently available information, and we describe a recent measurement on the Space Shuttle that we performed in order to substantially extend the range of energies in which the elemental composition is known. We present and discuss the results, and we also summarize and discuss recent data on the electron component of cosmic rays. The body of data now available contains several features that are difficult to explain within current models of galactic shock acceleration and “leaky box” containment. We emphasize the need for further measurements, and we briefly discuss possible opportunities for future work. 相似文献
2.
This paper discusses past, present, and future strategic aircraft requirements for ingress and egress, then focuses on the technologies of the CO2 Laser Radar and the Automatic Target Recognizer. Present systems currently consist of a mix of various sensors which are not correlated until each is presented to the operator. Additionally, active sensors are highly detectable by threat warning systems, while passive sensors do not provide critical range information. CO2 Laser and ATR technologies will significantly contribute to the resolution of these issues. 相似文献
3.
Cassini Imaging Science: Instrument Characteristics And Anticipated Scientific Investigations At Saturn 总被引:1,自引:0,他引:1
Carolyn C. Porco Robert A. West Steven Squyres Alfred Mcewen Peter Thomas Carl D. Murray Anthony Delgenio Andrew P. Ingersoll Torrence V. Johnson Gerhard Neukum Joseph Veverka Luke Dones Andre Brahic Joseph A. Burns Vance Haemmerle Benjamin Knowles Douglas Dawson Thomas Roatsch Kevin Beurle William Owen 《Space Science Reviews》2004,115(1-4):363-497
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35∘ across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5∘ across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date. 相似文献
4.
Artem L. Ponomarev Alamelu Sundaresan Marcelo E. Vazquez Peter Guida Angela Kim Francis A. Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation. 相似文献
5.
A mathematical model for the solar radiation forces and moments acting on a square plate (platform) in orbit is obtained by considering the plate mode shapes as combinations of free-free beam shape functions. The moment expressions for a plate of arbitrary reflectivity coefficient are obtained as a function of the solar incidence angle. It is seen that only the first three flexible modes of the plate generate a first order net moment about the center of mass, and that the solar radiation pressure does not influence the flexible modes of the plate for small amplitude vibrations. The solar radiation disturbance model is then included in the dynamic model of a square plate nominally oriented along the local vertical and having the major surface of the plate normal to the orbital plane. The roll angle of the plate is seen to increase steadily due to the solar radiation pressure whereas the pitch and yaw motions oscillate with an amplitude of approximately 0.2° for a 100 m square thin aluminum plate in synchronous orbit. To control the shape and orientation of the plate two point actuators are assumed—one whose force axis is normal to the plane of the plate, the second with a force axis in the plane of the plate. The control law and the feedback gain values are obtained based on linear quadratic Gaussian methods. Transient responses and control requirements are simulated for local vertical and horizontal orientations. 相似文献
6.
Fixed wing micro air vehicles (wingspan between 10 and 15 cm) are aerodynamically challenging due to the low Reynolds number regime (104–105) they operate in. The low aspect ratio wings (typically used to maximize area under a size constraint) promote strong tip vortices, and are susceptible to rolling instabilities. Wind gusts can be of the same order of magnitude as the flight speed (10–15 m/s). Standard control surfaces on an empennage must be eliminated for size considerations and drag reduction, and the range of stable center of gravity locations is only a few millimeters long. Membrane aeroelasticity has been identified as a tenable method to alleviate these issues: flexible wing structures with geometric twist (adaptive washout for gust rejection, delayed stall) and aerodynamic twist (adaptive inflation for high lift, larger stability margins) are both considered here. Recent investigations in static aeroelastic characterization, including flight loads, wing deformation, flow structures, aeroelastic-tailoring studies through laminate orientation, as well as unconventional techniques based on membrane pre-tension, are reviewed. Multi-objective optimization aimed at improving lift, drag, and pitching moment considerations is also discussed. 相似文献
7.
8.
Jessica M. Sunshine Michael F. A’Hearn Olivier Groussin Lucy A. McFadden Kenneth P. Klaasen Peter H. Schultz Carey M. Lisse 《Space Science Reviews》2005,117(1-2):269-295
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging
from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations
of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates,
organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements
at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This
article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral
data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission. 相似文献
9.
P Tsou DE Brownlee CP McKay AD Anbar H Yano K Altwegg LW Beegle R Dissly NJ Strange I Kanik 《Astrobiology》2012,12(8):730-742
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742. 相似文献
10.
Michael J. S. Belton Karen J. Meech Michael F. A’Hearn Olivier Groussin Lucy Mcfadden Carey Lisse Yanga R. Fernández Jana PittichovÁ Henry Hsieh Jochen Kissel Kenneth Klaasen Philippe Lamy Dina Prialnik Jessica Sunshine Peter Thomas Imre Toth 《Space Science Reviews》2005,117(1-2):137-160
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus. 相似文献