首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航天技术   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   
2.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   
3.
F-region vertical plasma drift velocities were deduced from the hourly hmF2 values acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4°N, 358.5°E, dip angle 5.9°N) in Africa. Our results are compared against the global empirical model of Scherliess and Fejer (1999) incorporated in the IRI model (IRI-2007) for 1600 to 0800 LT from 1 year of data during sunspot maximum year of 1989 (yearly average solar flux intensity, F10.7 = 192) corresponding to the peak phase of solar cycle 22, under magnetically quiet conditions. The drifts are entirely downward between 2000 and 0500 LT bin for both techniques and the root mean square error (RMSE) between the modeled and the ionosonde vertical plasma drifts during these periods is 3.80, 4.37, and 4.74 m/s for June solstice, December solstice and equinox, respectively. Ouagadougou average vertical drifts show evening prereversal enhancement (PRE) velocity peaks (VZP) of about 16, 14, and 17 m/s in June solstice, December solstice, and equinox, respectively, at 1900–2000 LT; whereas global empirical model average drifts indicate VZP of approximately 33 m/s (June solstice), 29 m/s (December solstice), and 50 m/s (equinox) at 1800 LT. We find very weak and positive correlation (+0.10376) between modeled VZP versus F10.7, while ionosonde VZP against F10.7 gives worst and opposite correlation (−0.05799). The results also show that modeled VZPAp indicates good and positive correlation (+0.64289), but ionosonde VZPAp exhibits poor and negative correlation (−0.22477).  相似文献   
4.
Measurements of the critical frequency, foF2 recorded over Ibadan: 7.4°N, 3.9°E (geographic), 6°S (dip angle) have been compared with the International Reference Ionosphere (IRI-2007) model for solar maximum geomagnetically quiet conditions, with a view to determining what modifications might bring about better predictions for the model. Our results reveal that the present version of IRI essentially reproduces diurnal trends and the general features of the experimental observations for all seasons, except for nighttime June solstice periods, which the model seriously overestimated. The model errors ranging from 50% to 125% over the four seasons considered in this study. It is also indicated that the percentage relative deviations between the observed and the modeled values vary approximately from −11% to 12% (March), −34% to 11% (June), −16% to 12% (September), and −10% to 13% (December). An unexpected feature of foF2 is obvious and remarkable reduction in values during nighttime June solstice periods compared to that in other seasons. Relationship between equatorial vertical drift and foF2 is also investigated. However, cross correlation analysis reveals strong anti-correlation between vertical drift and critical frequency during the daytime hours, but exceptionally opposite is the case for the nighttime sector. The discrepancies which are noted, particularly during June solstice season are attributed to processes most likely within the thermosphere and from meteorological influences during quiet magnetic conditions.  相似文献   
5.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号