首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   2篇
航天技术   3篇
  2012年   2篇
  2009年   1篇
  1989年   2篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Rayleigh optical depth is an integral part of many radiative transfer problems. This paper discusses different elements and approaches of its determination. Then, it presents a method, which ensures more realistic estimate of Rayleigh optical depth by using refractive index and depolarization factor (including rotational Raman lines) adjusted according to the state and composition of the atmosphere. It is based on the published experimental and theoretical results. The Rayleigh optical depth calculations are compared with the Elterman’s model calculations for trend analysis purpose. Rayleigh optical depths are found to be around 3.4% lower than previous researchers, as they ignored the constraints of conservation of angular momentum in the rotational/vibrational transitions of the molecules during scattering.  相似文献   
2.
3.
The paper describes behavior of surface ozone, its precursor gases, BC along with TOCC, TWVC, AOT1020 nm as well as UV and IR radiation intensities observed during the partial solar eclipse of 15th January, 2010 over Udaipur, where 52% solar disc is obscured due to the moon’s shadow. During the beginning to main eclipse phase, the deviation values of several air pollutants concentrations from eclipse to control day values vary in a small range from −9 to −2 ppb in case of surface ozone and −180 to −80 ppb for CO. The corresponding change in the values of BC observed from −3.3 to −.5 μg/m3. No significant change is found in NO2, NO or in ratio of NO2/NO values during the partial eclipse time. TOCC values decrease from 3 to 5 DU along with a reduction in UV radiation intensity from 20 to 35% from starting to the main eclipse phase. The AOT1020 nm values are found to increase from .2 to 1.0 along with a reduction in IR radiation intensity order of 50%. However, TWVC values decrease from .22 to .1 cm during the eclipse hours. The low level of dilution in surface ozone in eclipse period may be attributed with change in local atmospheric boundary layer dynamic conditions or limited air pollutants dispersion, in term of decreases in planetary boundary layer height, wind speed and hence ventilation coefficient in the same eclipse hours. Thus, present studies support the argument for the leading roles of photochemical reactions with its precursor gases under presence of solar radiation in surface ozone variability. Other possible controlling factors are advection of air pollutants from the polluted region as evident from backward wind trajectories and altering the local meteorological conditions.  相似文献   
4.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号