首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   1篇
航天   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Kravtsov  Yu. A.  Tinin  M. V. 《Cosmic Research》2003,41(4):357-358
A new procedure for restoration of the plasma inhomogeneities with improved resolution is suggested. The procedure deals with the double weighted Fourier transform (DWFT) of the observed wavefield in coordinates of both receivers = (x, y) and sources 0 = (x 0, y 0) [1]. Phase increments between the sources and receivers, being found from DWFT representation, can be used for extracting information on small perturbations of the dielectric constant ~(, z) in a way similar to traditional radio tomography. The resulting resolution of the method is close to the diffraction limit = h/D in the horizontal direction and z = (h/D)2 in the vertical direction, where h is the height of inhomogeneities and D is the length of the ground-based receiving system.  相似文献   
2.
The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号