首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Galileo operational orbits are slightly affected by the 3 to 5 tesseral resonance, an effect that can be much more important in the case of disposal orbits. Proceeding by canonical perturbation theory we show that the part of the long-term Hamiltonian corresponding to the non-centralities of the Earth's gravitational potential can be replaced by an intermediary that shows the pendulum dynamics of the 3 to 5 tesseral resonance problem. Inclusion of lunisolar perturbations requires a semi-analytical integration, which is compared with the corresponding results from the well-established Draper Semi-analytical Satellite Theory.  相似文献   
2.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   
3.
We extend the empirical coronal mass ejection (CME) arrival model of Gopalswamy et al. [Gopalswamy, N. et al. Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res. 106, 29207, 2001] to predict the 1-AU arrival of interplanetary (IP) shocks. A set of 29 IP shocks and the associated magnetic clouds observed by the Wind spacecraft are used for this study. The primary input to this empirical shock arrival model is the initial speed of white-light CMEs obtained using coronagraphs. We use the gas dynamic piston–shock relationship to derive the ESA model which provides a simple means of obtaining the 1-AU speed and arrival times of interplanetary shocks using CME speeds.  相似文献   
4.
In the recent years, the discovery of a new class of Galactic transients with fast and bright flaring X-ray activity, the supergiant fast X-ray transients, has completely changed our view and comprehension of massive X-ray binaries. These objects display X-ray outbursts which are difficult to be explained in the framework of standard theories for the accretion of matter onto compact objects, and could represent a dominant population of X-ray binaries. I will review their main observational properties (neutron star magnetic field, orbital and spin period, long term behavior, duty cycle, quiescence and outburst emission), which pose serious problems to the main mechanisms recently proposed to explain their X-ray behavior. I will discuss both present results and future perspectives with the next generation of X-ray telescopes.  相似文献   
5.
The recent discovery of a new class of recurrent and fast X-ray transient sources, the Supergiant Fast X-ray Transients, poses interesting questions on the possible mechanisms responsible for their transient X-ray emission. The association with blue supergiants, the spectral properties similar to those of accreting pulsars and the detection, in a few cases, of X-ray pulsations, confirm that these transients are High Mass X-ray Binaries. I review the different mechanisms proposed to explain their transient outbursts and the link to persistent wind accretors. I discuss the different models in light of the new observational results coming from an on-going monitoring campaign of four Supergiant Fast X-ray Transients with Swift.  相似文献   
6.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   
7.
We compute the input of meteoric materials expected on Titan, and integrate this dust model with an ablation model and a comprehensive chemical model, investigating the effects on the atmosphere and surface. We find that a water deposition of 10-100 times the expected interplanetary dust flux /7/, or a recent large impact, is required to produce the observed CO2 abundance /2/. Ionisation due to meteoric activity is not likely to be higher than that due to other sources.  相似文献   
8.
M. Lara  S. Ferrer 《Cosmic Research》2013,51(4):289-303
The attitude dynamics of a fast rotating triaxial satellite under gravity-gradient is revisited. The essentially unique reduction of the Euler-Poinsot Hamiltonian, which can be performed in different sets of variables, provides a suitable set of canonical variables that expedites the perturbation approach. Two canonical transformations reduce the perturbed problem to its secular terms. The secular Hamiltonian and the transformation equations of the averaging are computed in closed form of the triaxiality coefficient, thus being valid for any triaxial body. The solution depends on Jacobi elliptic functions and integrals, and applies to non-resonant rotations under the assumption that the rotation rate is much higher than the orbital or precessional motion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号