首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航天技术   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Voyager Planetary Radio Astronomy Experiment detected strong 40 kHz to 850 kHz radio emissions from Uranus after closest approach and somewhat weaker emissions, but none above 100 kHz before closest approach, on the dayside of Uranus. The time variations of these emissions closely match Uranus' rotation, in a period of 17.24 h, and are evidently controlled by the strength and shape of its magnetic field. Throughout the entire encounter the polarization of the emission was approximately lefthand, corresponding to extraordinary mode. The emission associated with the nightside pole was a relatively smooth continuum (free of bursts) with a Gaussian-shaped rise and fall at low frequencies, 200 kHz for example, but a Gaussian with a central dip nearly to zero lasting a little less than two hours at frequencies above 400 kHz. Half a rotation later, when Voyager was near the magnetic equator of Uranus and farthest from the nightside dipole tip, the continuum emission was absent, but very strong, narrowband impulsive bursts appeared. Voyager successfully acquired one brief (24 seconds long) record of high time resolution radio observations in the range 500 to 700 kHz. This record, which was made near closest approach, shows a hierarchy of fast variations. Several days after closest approach, at the times of bowshock crossings outbound, the continuum emissions were modulated strongly in a manner suggestive of the presence of waves in the bowshock regions.

The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately ten-minute period, and, as early as several days before closest approach in the frequency range below 100 kHz, very intense isolated bursts lasting tens of minutes.  相似文献   

2.
The Voyager observations of electrical discharges in Saturn's rings strongly support earlier speculations on the role played by electrostatics, magnetic fields, and lightning phenomena in the primitive solar system. They also suggest conditions then by direct analogy rather than by extrapolating backwards through time from conditions now. The observed discharges show a pronounced 10h periodicity, which suggests a source in Keplerian orbit at 1.80 ± 0.01 Saturn radii (1 RS = 60,330 km). In that region, the B ring is thicker than optical depth 1.8 for about 5,000 km. At 1.805 ± 0.001 Saturn radii, however, the ring is virtually transparent for a gap of width 200 m. We conclude that a small satellite orbits Saturn at that radius and clears the gap. The gap edges must prevent diffusive filling of the gap by fine material which is especially abundant at this position in the rings and would otherwise destroy the gap in minutes. The discharges represent the satellite's interaction with the outer edge of the gap. Spoke formation may involve the interaction of ring material in the vicinity of the gap.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号