首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
航空   4篇
航天技术   2篇
航天   1篇
  2013年   1篇
  2011年   1篇
  2001年   2篇
  2000年   1篇
  1995年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
The objective of the University of Maryland ISTP theory project is the development of the analytical and computational tools, which, combined with the data collected by the space and ground-based ISTP sensors, will lead to the construction of the first causal and predictive global geospace model. To attain this objective a research project composed of four complementary parts is conducted. First the global interaction of the solar wind-magnetosphe re system is studied using three-dimensional MHD simulations. Appropriate results of these simulations are made available to other ISTP investigators through the Central Data Handling Facility (CDHF) in a format suitable for comparison with the observations from the ISTP spacecrafts and ground instruments. Second, simulations of local processes are performed using a variety of non-MHD codes (hybrid, particle and multifluid) to study critical magnetospheric boundary layers, such as the magnetopause and the magnetotail. Third, a strong analytic effort using recently developed methods of nonlinear dynamics is conducted, to provide a complementary semi-empirical understanding of the nonlinear response of the magnetosphere and its parts to the solar wind input. The fourth part will be conducted during and following the data retrieval and its objective is to utilize the data base in conjunction with the above models to produce the next generation of global and local magnetospheric models. Special emphasis is paid to the development of advanced visualization packages that allow for interactive real time comparison of the experimental and computational data. Examples of the computational tools and of the ongoing investigations are presented.  相似文献   
2.
Pc 5 ULF waves are seen concurrently with the rise in radiation belt fluxes associated with CME magnetic cloud events. A 3D global MHD simulation of the 10–11 January, 1997 event has been analyzed for mode structure and shown to contain field line resonance components, both toroidal and poloidal, with peak power on the nightside during southward IMF conditions. A mechanism for inward radial transport and first-invariant conserving acceleration of relativistic electrons is assessed in the context of ULF mode structure analysis, and compared with groundbased and satellite observations.  相似文献   
3.
ABSTRACT

The ability to mentally represent spatial information is a fundamental cognitive process. To many people, this process feels a bit like visual perception, hence the term ‘spatial visualization’. In this paper, we describe a method for measuring the accuracy of spatial visualization, specifically visualization of a complex path in imaginary space. A critical feature of this method (called Path Visualization) is that it relies on the detection of intersections in a visualized path. Intersection detection is an inherently spatial task that requires a spatial representation. In this paper, we show how the Path Visualization method works, and how it can be customized to address several key research issues in human spatial cognition.  相似文献   
4.
Experimental Study of Corner Stall in a Linear Compressor Cascade   总被引:2,自引:0,他引:2  
In order to gain a better knowledge of the mechanisms and to calibrate computational fluid dynamics (CFD) tools including both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES),a detailed and accurate experimental study of corner stall in a linear compressor cascade has been carried out.Data are taken at a Reynolds number of 382 000 based on blade chord and inlet velocity.At first,inlet flow boundary layer is surveyed using hot-wire anemometry.Then in order to investigate the effects of incidence,measurements are acquired at five incidences,including static pressures on both blade and endwall surfaces measured by pressure taps and the total pressure losses of outlet flow measured by a five-hole pressure probe.The maximum losses as well as the extent of losses of the corner stall are presented as a function of the investigated incidences.  相似文献   
5.
The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals — which comprise up to 1 vol.% of the meteorites — provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages — Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays — and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes.Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last 1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved.The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles.The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in 18O between igneous silicate in the meteorites and the secondary minerals (30) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (400°C) and have been taken to suggest low temperatures (e.g. 150°C) of precipitation from a hydrous fluid.  相似文献   
6.
Litton EDD is developing a new class of Ka-band traveling-wave tubes (TWTs) that use a novel integral-polepiece folded-waveguide circuit to generate peak and average powers up to 1,500 watts. Rugged and highly reliable, this new technology is especially suited for airborne radars. Ongoing developments to increase the average power, the bandwidth and the frequency may be useful for future designs  相似文献   
7.
Global MHD models hold the promise of providing a physics-based understanding of magnetospheric structure and dynamics. As such models have become more sophisticated, and computing power has increased, it is now possible to model actual events using solar wind data as a boundary condition. In this paper we present some results MHD simulations of actual storm and substorm events. We will demonstrate that not only can the simulations reproduce details of events, they also are reproducing fundamental aspects of energy coupling between the solar wind and the magnetosphere in such a manner that we can distinguish storms and substorms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号