首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航天技术   14篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
The decay phase of the sunspot cycle 23 exhibited two unusual features. First, it lasted too long. Second, the interplanetary magnetic field intensity at earth orbit reached the lowest value since in situ measurements in space began in October 1963. These physical anomalies significantly altered the early forecasts for the sunspot activity parameters for cycle 24, made by several colleagues. We note that there was a significant change in the solar behavior during cycle 22. We discuss the observed trends and their effect on our empirical solar activity forecast technique, leading to our prediction for cycle 24 parameters; cycle 24 will be only half as active as cycle 23, reaching its peak in May 2013. We speculate on the possible implications of this outcome on future earth climate change and the ensuing socio-economic consequences.  相似文献   
2.
The pivotal role played by the interplanetary magnetic field (B) in modulating galactic cosmic ray (GCR) intensity in the heliosphere is described. We show that the inverse correlation observed by Forbush (1958) between GCRs and sunspot numbers (SSNs) is reflected in high correlation between SSNs and B (cc = 0.94). The SSN data are available since 1700 and the derived B data since 1835. The paleo-cosmic ray data are available for several millennia in the form of 10Be radionuclide sequestered in polar ice. The data of the ion chambers (ICs) at the Cheltenham–Fredericksburg–Yakutsk (CFY) sites are combined to create a data string for 1937–1988. In turn, these data are used to extend the measurements of the low energy GCR ions (>0.1 GeV) at balloon altitudes at high latitudes in Russia to 1937. These data are then correlated to B and the fit parameters are used to extend the low energy ion data to 1900, creating the instrumental era GCR time series for the twentieth century. The derived GCR time series is compared to 10Be measured at two sites in Greenland, namely Dye 3 and NGRIP for 1900–2000 to check the internal consistency of datasets for the long-term trend. We find that the annual mean rate (%) for 1965 at NGRIP is an outlier. We replace it with the mean of 1964 and 1965 rates and construct a new re-normalized time series at NGIP, improving the agreement with the derived instrumental era GCR time series for the twentieth century as well. This should encourage its use by heliophysics community for varied applications.  相似文献   
3.
The descent of sunspot cycle 23 to an unprecedented minimum of long duration in 2006–2009 led to a prolonged galactic cosmic ray (GCR) recovery to the highest level observed in the instrumental era for a variety of energetic charged particle species on Earth, over a wide range of rigidities. The remarkable GCR increase measured by several ground-based, balloon-borne, and detectors on a satellite is described and discussed. It is accompanied by a decrease in solar wind velocity and interplanetary magnetic field at 1 a.u., reaching the lowest values since measurements of the solar wind began in October 1963; the solar polar field strength (μT) measured at the Wilcox Solar Observatory (WSO) is also significantly reduced compared to prior cycles since the start of the program in 1976, the polar field in the northern hemisphere reversed in June 2012 and again in February 2014, that in the southern hemisphere reversed in July 2013. If updates of WSO data confirm the second reversal in northern solar hemisphere, it would pose a serious challenge to the Dynamo Theory. The long-term change in solar behavior may have begun in 1992, perhaps earlier. The physical underpinnings of these solar changes need to be understood and their effect on GCR modulation processes clarified. The study discusses the recent phenomena in the context of GCR modulation since 1900. These happenings affected our empirical predictions for the key parameters for the next two sunspot cycles (they may be progressively less active than sunspot cycle 24) but it enhanced support for our prediction that solar activity is descending into a Dalton-like grand minimum in the middle of the twentyfirst century, reducing the frequency of the coronal mass ejections; they determine the space weather affecting the quality of life on Earth, radiation dose for hardware and human activities in space as well as the frequency of large Forbush decreases at 1 a.u.  相似文献   
4.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
5.
For six decades, the global network of neutron monitors (NMs) has provided a continuous stream of very valuable data to the heliophysics community, leading to many insights into the myriad modes of charged particle transport in the tangled magnetic fields that permeate the 3D heliosphere. Earlier, Ahluwalia and Ygbuhay (2012) reported on the drifts in some high latitude NM counting rates in the American zone. We continue our enquiry by testing the stability of the counting rate baselines of some NMs operating in Europe, Africa, and Asia. The data from these detectors have been extremely valuable for the short-term time variation studies, but caution is advised in using the data for long-term studies from NMs with baselines that are drifting for cause(s) unknown.  相似文献   
6.
The common methodologies used to predict the smooth sunspot number (SSN) at peak (Rmax) and the rise time (Tr) for a cycle are noted. The estimates based on geomagnetic precursors give the best prediction of Rmax for five SSN cycles (20–24). In particular, an empirical technique invoking three-cycle quasi-periodicity (TCQP) in Ap index has made accurate predictions of Rmax and Tr for two consecutive SSN cycles (23 and 24). The dynamo theories are unable to account for TCQP. If it endures in the 21st century the Sun shall enter a Dalton-like grand minimum. It was a period of global cooling. The current status of the ascending phase of cycle 24 is described and the delayed reversal of the solar polar field reversal in the southern hemisphere in September 2013 is noted.  相似文献   
7.
For the last six decades the neutron monitors have provided a continuous string of very reliable data to the heliophysics community. Although neutron monitors are not the primary source of data for the galactic cosmic rays, these data serve as a baseline reference for the data collected by the detectors on board the satellites and deep space probes, far away from earth orbit. The pressure corrected hourly data are available from the World Data Centers. These data have been used to derive deep insights pertaining to the electromagnetic states of the heliosphere and the modes of transport of energetic charged particles in the tangled interplanetary magnetic fields. We present evidence that some of the high latitude neutron monitors are undergoing long-term drifts in their baselines. In particular, we argue that there is no physical basis to justify the observed long-term downward trend in the baseline of the South Pole neutron monitor. The real reason may have to do with its maintenance at a distant location with challenging logistics and an improper normalization of its data after the 26 months break in the 1970s.  相似文献   
8.
We have studied annual frequency distribution of the Forbush decreases for three solar cycles (20, 21, 22); most are associated with the fast ICMEs and SSCs. The frequency varies in step with the solar cycle but the distribution has a notable gap embedded in it, near the maximum of the cycle leading to two peaks in Forbush decreases per cycle. We show that the gap coincides with the epoch of solar polar field reversal. There is an indication of an odd/even cycle effect in the frequency distribution of Forbush decreases and the associated SSCs. We find that two peaks in Forbush decrease and SSC distributions are separated by the Gnevyshev gap; second peaks occur well before the onset of the high-speed streams in the descending phase of a cycle which do not cause Forbush decreases but do contribute to a peak in the geomagnetic activity index Ap. We compare Forbush decrease and SSC distributions with the corresponding distribution of the solar wind electric field and find that a large amplitude of the electric field of itself does not cause a Forbush decrease to occur unless it is also associated with a fast ICME/SSC.  相似文献   
9.
The annual mean sunspot number (SSN) has a minimum value in 2008, while the monthly mean SSN has a value of zero in August 2009. The galactic cosmic ray modulation for cycle 24 began at earth orbit in January 2010. We study the onset characteristics of the new modulation cycle using data from the global network of neutron monitors. They respond to time variations in different segments of the galactic cosmic ray rigidity spectrum. The corresponding temporal variations in the interplanetary magnetic field intensity (B) and solar wind velocity (V) as well as the tilt angle of the heliospheric current sheet are also studied. There is a lag of 3 months between a large, sharp increase of the tilt angle of the heliospheric current sheet and the onset of modulation. Some neutron monitors are undergoing long-term drifts of unknown origin.  相似文献   
10.
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号