首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   0篇
  国内免费   1篇
航空   55篇
航天技术   29篇
航天   26篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   8篇
  1996年   3篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1982年   2篇
  1980年   2篇
  1972年   1篇
  1970年   2篇
  1968年   4篇
  1967年   1篇
  1966年   2篇
  1963年   2篇
排序方式: 共有110条查询结果,搜索用时 0 毫秒
1.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   
2.
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring.  相似文献   
3.
First recognized by Wu and Lee (Ap. J. 230, 621, 1979), electron-cyclotron masers can be activated under very mild conditions. Large growth rates can occur even for relatively mild anisotropies in the electron velocity distribution, e.g., the one-sided loss cones that commonly occur when electrons with small pitch angles precipitate into high density regions at the footpoints of flaring loops while others are reflected in the converging field in the corona. Maser action can plausibly occur at the second harmonic of the local gyrofrequency and so explain certain very bright (? 1010 K) microwave bursts from the sun and other stars. However, the preponderance of the energy is at the first harmonic.We suggest that masers operating at the local gyrofrequency in a flaring loop generate radiation at decimeter wavelengths that is a significant fraction of the total energy of the flare, in fact (and not coincidentally) comparable with the energy in electrons associated with hard X-ray bursts. Essentially all of the radio energy is trapped in the corona and serves to produce localized heating in a volume large compared with the energy release region. Thus it can transfer energy by radiation from one magnetic loop to another, possibly inducing further instabilities, and spreading the course of the flare. Eventually the energy probably escapes the corona as soft X-rays. The electron-cyclotron maser saturates by extracting the perpendicular energy of the electrons, thereby diffusing them into the loss cone at the maximum possible rate; the enhanced precipitation into the footpoints can produce bright emission in hard X-rays, EUV and Hα and remove any necessity for directive acceleration in the energy release region.Details of the proposed mechanism and effects are contained in two papers by Melrose and Dulk (Ap. J. 259, 1982).This work was sponsored by NASA under grants NAGW-91 and NSG-7287 to the University of Colorado.  相似文献   
4.
Pickup ions, created by ionization of slow moving atoms and molecules well inside the heliosphere, provide us with a new tool to probe remote regions in and beyond the heliosphere and to study injection and acceleration processes in the solar wind. Comprehensive and continuous measurements of H, He, C, N, O, Ne and other pickup ions, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that have been used to infer chemical and physical properties of the local interstellar cloud. With SWICS on Ulysses we discovered a new population of pickup ions, produced from atomic and molecular sources deep inside the heliosphere. The velocity distributions and composition of these “inner source” pickup ions are distinctly different from those of interstellar pickup ions, showing effects of strong adiabatic cooling, and a composition resembling that of the solar wind. Strong cooling indicates that the source of these pickup ions lies close to the Sun. The similarity of composition of inner source heavy ions to that of the solar wind implies that the dominant production mechanism for these pickup ions involves the absorption and re-emission of solar wind from interplanetary dust grains. While interstellar pickup ions are the seed population of the main Anomalous Cosmic Rays (ACRs), inner source pickup ions may be an important source of the rarer ACRs such as C, Mg, Si, S, and Fe. We present new results and review previous work with an emphasis on characteristics of the local interstellar cloud and properties of the inner source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
6.
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere.  相似文献   
7.
Magnetohydrodynamic (MHD) theory has been used in space physics for more than forty years, yet many important questions about space plasmas remain unanswered. We still do not understand how the solar wind is accelerated, how mass, momentum and energy are transported into the magnetosphere and what mechanisms initiate substorms. Questions have been raised from the beginning of the space era whether MHD theory can describe correctly space plasmas that are collisionless and rarely in thermal equilibrium. Ideal MHD fluids do not induce electromotive force, hence they lose the capability to interact electromagnetically. No currents and magnetic fields are generated, rendering ideal MHD theory not very useful for space plasmas. Observations from the plasma sheet are used as examples to show how collisionless plasmas behave. Interpreting these observations using MHD and ideal MHD concepts can lead to misleading conclusions. Notably, the bursty bulk flows (BBF) with large mean velocities left( v ≥400 km s right) that have been interpreted previously as E×B flows are shown to involve much more complicated physics. The sources of these nonvanishing v events, while still not known, are intimately related to mechanisms that create large phase space gradients that include beams and acceleration of ions to MeV energies. The distributions of these nonvanishing v events are associated with large amplitude variations of the magnetic field at frequencies up to and exceeding the local Larmor frequency where MHD theory is not valid. Understanding collisionless plasma dynamics such as substorms in the plasma sheet requires the self-consistency that only kinetic theory can provide. Kinetic modeling is still undergoing continual development with many studies limited to one and two dimensions, but there is urgent need to improve these models as more and more data show kinetic physics is fundamentally important. Only then will we be able to make progress and obtain a correct picture of how collisionless plasmas work in space.  相似文献   
8.
9.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   
10.
Previous calculations of the accumulation of small (∼10 km) planetesimals at ∼1 AU to form Mars-sized bodies assumed that the initial assemblage of planetesimals were all present at the outset. This is an obviously reasonable assumption in systems in which the time scale for growth time of ∼1026 g planetary bodies is long compared to estimates of the evolutionary time scale of a protosolar disk, as was the case in the pioneering work of Safronov (1969). It is now found that as a result of the preplanetary assemblage being unstable with respect to the runaway growth of the largest bodies, this is unlikely to be the case. The more realistic alternative of adding the initial planetesimals on a ∼105 year time scale is considered here, as well as the consequences of the initial planetesimals being considerably smaller than those assumed previously. It is found that although the time scale for runaway growth is now actually controlled by the availability of planetesimals, for planetesimal production time scales of ∼105 yrs, the final consequences are very similar. These calculations do show, however, that as a consequence of continuous infall during the runaway growth process, the late initial planetesimals are likely to be catastrophically disrupted by mutual collisions. For this reason, a more detailed treatment of the growth of planetesimals into planetary embryos will require a better understanding of the difficult problem of formation of the initial planetesimals themselves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号