首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航空   3篇
航天技术   6篇
  2003年   2篇
  1998年   1篇
  1994年   3篇
  1989年   2篇
  1988年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   
2.
Dosimeter data taken on the APEX (1994–1996), CRRES (1990–1991) and DMSP (1984–1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.  相似文献   
3.
4.
Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.  相似文献   
5.
A MicroElectronics Test Package (MEP) measured total dose degradation and single event upsets (SEUs) on 60 device types on the Combined Release and Radiation Effects Satellite (CRRES) in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. Simultaneous measurements of the high energy particle environment were used to make a direct cause and effect comparison of the energetic particle backgrounds and microelectronic performance characteristics. The galactic cosmic ray background for the period of the CRRES mission was at a minimum. The SEUs experienced from the cosmic ray background were correspondingly few in number, but surprisingly produced an equal probability of upset over an L-shell range of 8.5 Earth radii (RE) down to less than 3.0 RE. Cosmic ray induced upset frequencies in proton sensitive chips were over 2 orders of magnitude lower than those produced by protons in the heart of the inner proton radiation belts. Multiple upsets, those produced when a single particle upsets more than one memory location, were just as common from protons as from cosmic rays.  相似文献   
6.
A three-parameter constant-gain recursive filter is augmented by a residual-dependent frame time algorithm that automatically increases sampling rates when a target maneuvers. Computer simulations show that tracking performance is essentially independent of the particular target trajectory. It is found that radial distance errors remain effectively constant over different trajectories. It is the number of observations dictated by the adaptive frame time algorithm that is trajectory-dependent. The filter equations along with the frame time adjustment algorithm are first described, and a comparison made with a similar procedure. Examples given use the nonlinear observations generated by a passive sensor system  相似文献   
7.
Solar particle events as seen on CRRES.   总被引:1,自引:0,他引:1  
High energy proton detectors on the Combined Release and Radiation Effects Satellite (CRRES) were used to measure near-Earth solar protons in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. CRRES data from the major solar particle event on 23-25 March 1991 show conclusively that MeV solar protons can penetrate deep inside the magnetosphere (to an L-shell of 2.5 RE) when a large shock-induced Sudden Storm Commencement (SSC) occurs and significant solar particle populations are present at geosynchronous altitudes. The penetration of solar particles well inside boundaries predicted by Stormer theory occurred during every large solar event of the CRRES mission, as well as many of the smaller ones. Often the deep penetrations occurred simultaneously with the formation of new trapped radiation populations which peak at L-values between 2.3 and 4 RE (depending on particle energy) and which last from days to months.  相似文献   
8.
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号